BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23540395)

  • 1. iTRAQ-based proteomic profiling of the barnacle Balanus amphitrite in response to the antifouling compound meleagrin.
    Han Z; Sun J; Zhang Y; He F; Xu Y; Matsumura K; He LS; Qiu JW; Qi SH; Qian PY
    J Proteome Res; 2013 May; 12(5):2090-100. PubMed ID: 23540395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle Balanus (=Amphibalanus) amphitrite.
    Zhang Y; Xu Y; Arellano SM; Xiao K; Qian PY
    J Proteome Res; 2010 Jun; 9(6):3146-57. PubMed ID: 20397722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids.
    Dash S; Chandramouli KH; Zhang Y; Qian PY
    Biofouling; 2012; 28(4):405-15. PubMed ID: 22519465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite.
    Thiyagarajan V; Qian PY
    Proteomics; 2008 Aug; 8(15):3164-72. PubMed ID: 18654988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings.
    Aldred N; Li G; Gao Y; Clare AS; Jiang S
    Biofouling; 2010 Aug; 26(6):673-83. PubMed ID: 20658383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina.
    Zhang YF; Wang GC; Ying X; Sougrat R; Qian PY
    Biofouling; 2011 May; 27(5):467-75. PubMed ID: 21604216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting.
    Zhang G; Wong YH; Zhang Y; He LS; Xu Y; Qian PY
    Proteomics; 2015 Nov; 15(22):3854-64. PubMed ID: 26316090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite).
    Aldred N; Phang IY; Conlan SL; Clare AS; Vancso GJ
    Biofouling; 2008; 24(2):97-107. PubMed ID: 18231899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms.
    Zhang YF; Zhang H; He L; Liu C; Xu Y; Qian PY
    ACS Chem Biol; 2012 Jun; 7(6):1049-58. PubMed ID: 22458453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland.
    Yan G; Sun J; Wang Z; Qian PY; He L
    Mar Drugs; 2020 Mar; 18(4):. PubMed ID: 32244485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Late-stage divergent synthesis and antifouling activity of geraniol-butenolide hybrid molecules.
    Takamura H; Ohashi T; Kikuchi T; Endo N; Fukuda Y; Kadota I
    Org Biomol Chem; 2017 Jul; 15(26):5549-5555. PubMed ID: 28632269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates.
    Thiyagarajan V; Wong T; Qian PY
    J Proteome Res; 2009 Jun; 8(6):2708-19. PubMed ID: 19341272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries.
    Maleschlijski S; Bauer S; Di Fino A; Sendra GH; Clare AS; Rosenhahn A
    Biofouling; 2014 Oct; 30(9):1055-65. PubMed ID: 25334041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-protein alpha subunits distribution in the cyprid of Balanus amphitrite (=Amphibalanus amphitrite) (Cirripedia, Crustacea).
    Gallus L; Ferrando S; Gambardella C; Amaroli A; Faimali M; Piazza V; Masini MA
    Microsc Res Tech; 2012 Dec; 75(12):1613-22. PubMed ID: 22833248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling eunicellin-type diterpenoids from the gorgonian Astrogorgia sp.
    Lai D; Liu D; Deng Z; van Ofwegen L; Proksch P; Lin W
    J Nat Prod; 2012 Sep; 75(9):1595-602. PubMed ID: 22905736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive steroid derivatives and butyrolactone derivatives from a gorgonian-derived Aspergillus sp. fungus.
    Chen M; Wang KL; Liu M; She ZG; Wang CY
    Chem Biodivers; 2015 Sep; 12(9):1398-406. PubMed ID: 26363883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochliomycin A inhibits the larval settlement of Amphibalanus amphitrite by activating the NO/cGMP pathway.
    Wang KL; Zhang G; Sun J; Xu Y; Han Z; Liu LL; Shao CL; Liu QA; Wang CY; Qian PY
    Biofouling; 2016; 32(1):35-44. PubMed ID: 26732984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?
    Quintana R; Jańczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ
    Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, Structure, and Potent Antifouling Activity of Sclerotioramine Derivatives.
    Wei MY; Wang CF; Wang KL; Qian PY; Wang CY; Shao CL
    Mar Biotechnol (NY); 2017 Aug; 19(4):372-378. PubMed ID: 28688034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide.
    Qian PY; Wong YH; Zhang Y
    Proteomics; 2010 Oct; 10(19):3435-46. PubMed ID: 20827734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.