These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 23540395)
1. iTRAQ-based proteomic profiling of the barnacle Balanus amphitrite in response to the antifouling compound meleagrin. Han Z; Sun J; Zhang Y; He F; Xu Y; Matsumura K; He LS; Qiu JW; Qi SH; Qian PY J Proteome Res; 2013 May; 12(5):2090-100. PubMed ID: 23540395 [TBL] [Abstract][Full Text] [Related]
2. Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle Balanus (=Amphibalanus) amphitrite. Zhang Y; Xu Y; Arellano SM; Xiao K; Qian PY J Proteome Res; 2010 Jun; 9(6):3146-57. PubMed ID: 20397722 [TBL] [Abstract][Full Text] [Related]
3. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids. Dash S; Chandramouli KH; Zhang Y; Qian PY Biofouling; 2012; 28(4):405-15. PubMed ID: 22519465 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite. Thiyagarajan V; Qian PY Proteomics; 2008 Aug; 8(15):3164-72. PubMed ID: 18654988 [TBL] [Abstract][Full Text] [Related]
5. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Aldred N; Li G; Gao Y; Clare AS; Jiang S Biofouling; 2010 Aug; 26(6):673-83. PubMed ID: 20658383 [TBL] [Abstract][Full Text] [Related]
6. The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina. Zhang YF; Wang GC; Ying X; Sougrat R; Qian PY Biofouling; 2011 May; 27(5):467-75. PubMed ID: 21604216 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting. Zhang G; Wong YH; Zhang Y; He LS; Xu Y; Qian PY Proteomics; 2015 Nov; 15(22):3854-64. PubMed ID: 26316090 [TBL] [Abstract][Full Text] [Related]
8. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite). Aldred N; Phang IY; Conlan SL; Clare AS; Vancso GJ Biofouling; 2008; 24(2):97-107. PubMed ID: 18231899 [TBL] [Abstract][Full Text] [Related]
9. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. Zhang YF; Zhang H; He L; Liu C; Xu Y; Qian PY ACS Chem Biol; 2012 Jun; 7(6):1049-58. PubMed ID: 22458453 [TBL] [Abstract][Full Text] [Related]
10. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Yan G; Sun J; Wang Z; Qian PY; He L Mar Drugs; 2020 Mar; 18(4):. PubMed ID: 32244485 [TBL] [Abstract][Full Text] [Related]
12. 2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates. Thiyagarajan V; Wong T; Qian PY J Proteome Res; 2009 Jun; 8(6):2708-19. PubMed ID: 19341272 [TBL] [Abstract][Full Text] [Related]
13. Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries. Maleschlijski S; Bauer S; Di Fino A; Sendra GH; Clare AS; Rosenhahn A Biofouling; 2014 Oct; 30(9):1055-65. PubMed ID: 25334041 [TBL] [Abstract][Full Text] [Related]
14. G-protein alpha subunits distribution in the cyprid of Balanus amphitrite (=Amphibalanus amphitrite) (Cirripedia, Crustacea). Gallus L; Ferrando S; Gambardella C; Amaroli A; Faimali M; Piazza V; Masini MA Microsc Res Tech; 2012 Dec; 75(12):1613-22. PubMed ID: 22833248 [TBL] [Abstract][Full Text] [Related]
15. Antifouling eunicellin-type diterpenoids from the gorgonian Astrogorgia sp. Lai D; Liu D; Deng Z; van Ofwegen L; Proksch P; Lin W J Nat Prod; 2012 Sep; 75(9):1595-602. PubMed ID: 22905736 [TBL] [Abstract][Full Text] [Related]
16. Bioactive steroid derivatives and butyrolactone derivatives from a gorgonian-derived Aspergillus sp. fungus. Chen M; Wang KL; Liu M; She ZG; Wang CY Chem Biodivers; 2015 Sep; 12(9):1398-406. PubMed ID: 26363883 [TBL] [Abstract][Full Text] [Related]
17. Cochliomycin A inhibits the larval settlement of Amphibalanus amphitrite by activating the NO/cGMP pathway. Wang KL; Zhang G; Sun J; Xu Y; Han Z; Liu LL; Shao CL; Liu QA; Wang CY; Qian PY Biofouling; 2016; 32(1):35-44. PubMed ID: 26732984 [TBL] [Abstract][Full Text] [Related]
18. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Quintana R; Jańczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581 [TBL] [Abstract][Full Text] [Related]
19. Preparation, Structure, and Potent Antifouling Activity of Sclerotioramine Derivatives. Wei MY; Wang CF; Wang KL; Qian PY; Wang CY; Shao CL Mar Biotechnol (NY); 2017 Aug; 19(4):372-378. PubMed ID: 28688034 [TBL] [Abstract][Full Text] [Related]
20. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide. Qian PY; Wong YH; Zhang Y Proteomics; 2010 Oct; 10(19):3435-46. PubMed ID: 20827734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]