These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 23540433)

  • 1. Simulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
    Boyle PM; Houchens BC; Kim AS
    J Colloid Interface Sci; 2013 Jun; 399():77-86. PubMed ID: 23540433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of confinement on the electrostatic interaction between charged colloids: a (N,V,T) Monte Carlo study within hyperspherical geometry.
    Delville A
    J Phys Chem B; 2005 Apr; 109(16):8164-70. PubMed ID: 16851954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of colloidal membrane filtration: principal issues for modeling.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2006 Jan; 119(1):35-53. PubMed ID: 16307713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study.
    Wei YT; Wu SC
    Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of solid pressure in the concentration polarization (CP) layer of colloidal particles and its impact on ultrafiltration.
    Wang XM; Li XY; David Waite T
    J Colloid Interface Sci; 2011 Jun; 358(1):290-300. PubMed ID: 21419415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
    Truzzolillo D; Bordi F; Sciortino F; Sennato S
    J Chem Phys; 2010 Jul; 133(2):024901. PubMed ID: 20632770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions.
    Hong S; Faibish RS; Elimelech M
    J Colloid Interface Sci; 1997 Dec; 196(2):267-277. PubMed ID: 9792752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.
    Brewer DD; Tsapatsis M; Kumar S
    J Chem Phys; 2010 Jul; 133(3):034709. PubMed ID: 20649352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation.
    Faibish RS; Elimelech M; Cohen Y
    J Colloid Interface Sci; 1998 Aug; 204(1):77-86. PubMed ID: 9665769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoresis of two spheres: Influence of double layer and van der Waals interactions.
    Tseng S; Huang CH; Hsu JP
    J Colloid Interface Sci; 2015 Aug; 451():170-6. PubMed ID: 25897853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical approach to model multilayer colloidal deposition in porous media.
    Kulkarni P; Sureshkumar R; Biswas P
    Environ Sci Technol; 2005 Sep; 39(17):6361-70. PubMed ID: 16190188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical van der Waals interactions between spherical bodies of dipolar fluid.
    Stenhammar J; Trulsson M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011117. PubMed ID: 21867123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.
    Duval JF
    J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.