These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 23540570)
1. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
3. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744 [TBL] [Abstract][Full Text] [Related]
4. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
5. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216 [TBL] [Abstract][Full Text] [Related]
6. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries. Jeong YS; Park JB; Jung HG; Kim J; Luo X; Lu J; Curtiss L; Amine K; Sun YK; Scrosati B; Lee YJ Nano Lett; 2015 Jul; 15(7):4261-8. PubMed ID: 26115340 [TBL] [Abstract][Full Text] [Related]
7. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. Wan D; Yang C; Lin T; Tang Y; Zhou M; Zhong Y; Huang F; Lin J ACS Nano; 2012 Oct; 6(10):9068-78. PubMed ID: 22984901 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096 [TBL] [Abstract][Full Text] [Related]
9. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? C OA; Caballero Á; Morales J Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220 [TBL] [Abstract][Full Text] [Related]
10. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. Nithya C; Gopukumar S ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863 [TBL] [Abstract][Full Text] [Related]
11. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related]
12. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes. Kim JG; Kim Y; Noh Y; Kim WB ChemSusChem; 2015 May; 8(10):1752-60. PubMed ID: 25908219 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618 [TBL] [Abstract][Full Text] [Related]
14. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries. Truong TT; Liu Y; Ren Y; Trahey L; Sun Y ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Kuila T; Mishra AK; Khanra P; Kim NH; Lee JH Nanoscale; 2013 Jan; 5(1):52-71. PubMed ID: 23179249 [TBL] [Abstract][Full Text] [Related]
16. Influence of Binders and Solvents on Stability of Ru/RuO Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
18. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115 [TBL] [Abstract][Full Text] [Related]
19. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Chen D; Quan H; Liang J; Guo L Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]