These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23540752)

  • 1. Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.
    Glover TG; DeCoste JB; Sabo D; Zhang ZJ
    Langmuir; 2013 May; 29(18):5500-7. PubMed ID: 23540752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of sulfur dioxide by CoFe2O4 spinel ferrite nanoparticles and corresponding changes in magnetism.
    Glover TG; Sabo D; Vaughan LA; Rossin JA; Zhang ZJ
    Langmuir; 2012 Apr; 28(13):5695-702. PubMed ID: 22400990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe
    Hu Q; Liu Y; Gu X; Zhao Y
    Chemosphere; 2017 Aug; 181():328-336. PubMed ID: 28453965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption.
    Bhosale SV; Kanhe NS; Bhoraskar SV; Bhat SK; Bulakhe RN; Shim JJ; Mathe VL
    J Mater Sci Mater Med; 2015 Aug; 26(8):216. PubMed ID: 26216552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and first-principles characterization of functionalized magnetic nanoparticles.
    Antipas GS; Statharas E; Tserotas P; Papadopoulos N; Hristoforou E
    Chemphyschem; 2013 Jun; 14(9):1934-42. PubMed ID: 23649714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology.
    Srinivasan SY; Paknikar KM; Bodas D; Gajbhiye V
    Nanomedicine (Lond); 2018 May; 13(10):1221-1238. PubMed ID: 29882719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization.
    Shamim N; Hong L; Hidajat K; Uddin MS
    Colloids Surf B Biointerfaces; 2007 Mar; 55(1):51-8. PubMed ID: 17178452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method.
    Mazarío E; Herrasti P; Morales MP; Menéndez N
    Nanotechnology; 2012 Sep; 23(35):355708. PubMed ID: 22894928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonochemical synthesis of Gd
    Yadav RS; Kuřitka I; Vilcakova J; Havlica J; Kalina L; Urbánek P; Machovsky M; Skoda D; Masař M; Holek M
    Ultrason Sonochem; 2018 Jan; 40(Pt A):773-783. PubMed ID: 28946484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: Effect of zinc content and site occupation.
    Wu C; Xu Y; Xu S; Tu J; Tian C; Lin Z
    J Environ Sci (China); 2019 May; 79():248-255. PubMed ID: 30784447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, characterization, and phosphate removal and recovery of magnetic MnFe2O4 nano-particles as adsorbents.
    Xia S; Xu X; Xu C; Wang H; Zhang X; Liu G
    Environ Technol; 2016; 37(7):795-804. PubMed ID: 26292922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable multimodal adhesion of 3D, nanocrystalline CoFe
    Goodwin WB; Shin D; Sabo D; Hwang S; Zhang ZJ; Meredith JC; Sandhage KH
    Bioinspir Biomim; 2017 Nov; 12(6):066009. PubMed ID: 29105642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvothermal synthesis of cobalt ferrite hollow spheres with chitosan.
    Briceño S; Suarez J; Gonzalez G
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():842-846. PubMed ID: 28576057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of waste Mn-Zn dry battery as efficient nano-adsorbents for hazardous metals removal.
    Tu YJ; You CF; Chang CK
    J Hazard Mater; 2013 Aug; 258-259():102-8. PubMed ID: 23708452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinel-type ferrite nanoparticles for removal of arsenic(V) from water.
    Tavares DS; Lopes CB; Almeida JC; Vale C; Pereira E; Trindade T
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22523-22534. PubMed ID: 32319057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens.
    Singh S; Barick KC; Bahadur D
    J Hazard Mater; 2011 Sep; 192(3):1539-47. PubMed ID: 21784580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1).
    Kanagesan S; Aziz SB; Hashim M; Ismail I; Tamilselvan S; Alitheen NB; Swamy MK; Purna Chandra Rao B
    Molecules; 2016 Mar; 21(3):312. PubMed ID: 26978339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores.
    Psimadas D; Baldi G; Ravagli C; Comes Franchini M; Locatelli E; Innocenti C; Sangregorio C; Loudos G
    Nanotechnology; 2014 Jan; 25(2):025101. PubMed ID: 24334365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.