These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 23541152)
1. Implicit sequence learning and working memory: correlated or complicated? Janacsek K; Nemeth D Cortex; 2013 Sep; 49(8):2001-6. PubMed ID: 23541152 [TBL] [Abstract][Full Text] [Related]
2. The puzzle is complicated: when should working memory be related to implicit sequence learning, and when should it not? (Response to Martini et al.). Janacsek K; Nemeth D Cortex; 2015 Mar; 64():411-2. PubMed ID: 25239854 [No Abstract] [Full Text] [Related]
3. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task. van der Graaf FH; Maguire RP; Leenders KL; de Jong BM Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501 [TBL] [Abstract][Full Text] [Related]
4. Why should working memory be related to incidentally learned sequence structures? Martini M; Sachse P; Furtner MR; Gaschler R Cortex; 2015 Mar; 64():407-10. PubMed ID: 25113155 [No Abstract] [Full Text] [Related]
5. Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Aizenstein HJ; Butters MA; Clark KA; Figurski JL; Andrew Stenger V; Nebes RD; Reynolds CF; Carter CS Neurobiol Aging; 2006 May; 27(5):741-51. PubMed ID: 15935517 [TBL] [Abstract][Full Text] [Related]
6. Working memory effects on semantic processing: priming differences in pars orbitalis. Sabb FW; Bilder RM; Chou M; Bookheimer SY Neuroimage; 2007 Aug; 37(1):311-22. PubMed ID: 17555989 [TBL] [Abstract][Full Text] [Related]
7. Prefrontal lesions impair the implicit and explicit learning of sequences on visuomotor tasks. Gomez Beldarrain M; Grafman J; Ruiz de Velasco I; Pascual-Leone A; Garcia-Monco C Exp Brain Res; 2002 Feb; 142(4):529-38. PubMed ID: 11845248 [TBL] [Abstract][Full Text] [Related]
8. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study. Tanabe HC; Sadato N Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546 [TBL] [Abstract][Full Text] [Related]
9. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory. Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594 [TBL] [Abstract][Full Text] [Related]
10. The effect of motivation on working memory: an fMRI and SEM study. Szatkowska I; Bogorodzki P; Wolak T; Marchewka A; Szeszkowski W Neurobiol Learn Mem; 2008 Sep; 90(2):475-8. PubMed ID: 18620069 [TBL] [Abstract][Full Text] [Related]
11. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults. Thomas KM; Hunt RH; Vizueta N; Sommer T; Durston S; Yang Y; Worden MS J Cogn Neurosci; 2004 Oct; 16(8):1339-51. PubMed ID: 15509382 [TBL] [Abstract][Full Text] [Related]
12. Towards a solution for performance related confounds: frontal, striatal and parietal activation during a continuous spatiotemporal working memory manipulation task. Van Hecke J; Gladwin TE; Coremans J; Destoop M; Hulstijn W; Sabbe B Brain Imaging Behav; 2013 Mar; 7(1):85-90. PubMed ID: 22847714 [TBL] [Abstract][Full Text] [Related]
13. How verbal and spatial manipulation networks contribute to calculation: an fMRI study. Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434 [TBL] [Abstract][Full Text] [Related]
14. Neurocognitive contributions to motor skill learning: the role of working memory. Seidler RD; Bo J; Anguera JA J Mot Behav; 2012; 44(6):445-53. PubMed ID: 23237467 [TBL] [Abstract][Full Text] [Related]
15. Dissociating the role of the caudate nucleus and dorsolateral prefrontal cortex in the monitoring of events within human working memory. Provost JS; Petrides M; Monchi O Eur J Neurosci; 2010 Sep; 32(5):873-80. PubMed ID: 20722715 [TBL] [Abstract][Full Text] [Related]
16. The impact of age on prefrontal cortex integrity during spatial working memory retrieval. Toepper M; Markowitsch HJ; Gebhardt H; Beblo T; Bauer E; Woermann FG; Driessen M; Sammer G Neuropsychologia; 2014 Jul; 59():157-68. PubMed ID: 24825744 [TBL] [Abstract][Full Text] [Related]
17. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. Kantak SS; Mummidisetty CK; Stinear JW Eur J Neurosci; 2012 Sep; 36(5):2710-5. PubMed ID: 22758604 [TBL] [Abstract][Full Text] [Related]
18. Prefrontal, parietal and basal activation associated with the reordering of a two-element list held in working memory. Van Hecke J; Gladwin TE; Coremans J; Destoop M; Hulstijn W; Sabbe B Biol Psychol; 2010 Sep; 85(1):143-8. PubMed ID: 20542080 [TBL] [Abstract][Full Text] [Related]
19. The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Robertson EM; Tormos JM; Maeda F; Pascual-Leone A Cereb Cortex; 2001 Jul; 11(7):628-35. PubMed ID: 11415965 [TBL] [Abstract][Full Text] [Related]
20. The role of working memory capacity in implicit and explicit sequence learning of children: Differentiating movement speed and accuracy. van Abswoude F; Buszard T; van der Kamp J; Steenbergen B Hum Mov Sci; 2020 Feb; 69():102556. PubMed ID: 31989949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]