BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 23541615)

  • 1. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive equations to estimate spinal loads in symmetric lifting tasks.
    Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C; Parnianpour M
    J Biomech; 2011 Jan; 44(1):84-91. PubMed ID: 20850750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
    Ghezelbash F; Shirazi-Adl A; El Ouaaid Z; Plamondon A; Arjmand N
    J Biomech; 2020 Mar; 102():109550. PubMed ID: 31932024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.
    Gholipour A; Arjmand N
    J Biomech; 2016 Sep; 49(13):2946-2952. PubMed ID: 27452877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior thoracic posture increases thoracolumbar disc loading.
    Harrison DE; Colloca CJ; Harrison DD; Janik TJ; Haas JW; Keller TS
    Eur Spine J; 2005 Apr; 14(3):234-42. PubMed ID: 15168237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities.
    Rajaee MA; Arjmand N; Shirazi-Adl A; Plamondon A; Schmidt H
    Appl Ergon; 2015 May; 48():22-32. PubMed ID: 25683528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model.
    Shahvarpour A; Shirazi-Adl A; Larivière C; Bazrgari B
    J Biomech; 2015 Jan; 48(1):44-52. PubMed ID: 25476501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of changes in lumbar posture in static lifting.
    Arjmand N; Shirazi-Adl A
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2637-48. PubMed ID: 16319750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Bashkuev M; Schmidt H
    Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2018 Mar; 70():166-174. PubMed ID: 29089111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.
    Bazrgari B; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Dreischarf M; Schmidt H
    Med Eng Phys; 2016 Apr; 38(4):333-8. PubMed ID: 26922676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability.
    Ghezelbash F; Arjmand N; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1760-7. PubMed ID: 25229611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.