These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23541729)

  • 1. Systematic analysis of neural projections reveals clonal composition of the Drosophila brain.
    Ito M; Masuda N; Shinomiya K; Endo K; Ito K
    Curr Biol; 2013 Apr; 23(8):644-55. PubMed ID: 23541729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal development and organization of the adult Drosophila central brain.
    Yu HH; Awasaki T; Schroeder MD; Long F; Yang JS; He Y; Ding P; Kao JC; Wu GY; Peng H; Myers G; Lee T
    Curr Biol; 2013 Apr; 23(8):633-43. PubMed ID: 23541733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-brain neural network analysis (connectomics) using cell lineage-based neuron-labeling method.
    Ito K; Ito M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i8. PubMed ID: 25359849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of complete neuroblast cell lineages in the Drosophila embryonic brain via DiI labeling.
    Kraft KF; Urbach R
    Methods Mol Biol; 2014; 1082():37-56. PubMed ID: 24048925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal unit architecture of the adult fly brain.
    Ito K; Awasaki T
    Adv Exp Med Biol; 2008; 628():137-58. PubMed ID: 18683643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain.
    Toriya M; Tokunaga A; Sawamoto K; Nakao K; Okano H
    Dev Neurosci; 2006; 28(1-2):142-55. PubMed ID: 16508311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunofluorescent staining of Drosophila larval brain tissue.
    Daul AL; Komori H; Lee CY
    Cold Spring Harb Protoc; 2010 Jul; 2010(7):pdb.prot5460. PubMed ID: 20647364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system.
    Das A; Gupta T; Davla S; Prieto-Godino LL; Diegelmann S; Reddy OV; Raghavan KV; Reichert H; Lovick J; Hartenstein V
    Dev Biol; 2013 Jan; 373(2):322-37. PubMed ID: 23149077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.
    Riebli N; Viktorin G; Reichert H
    Neural Dev; 2013 Apr; 8():6. PubMed ID: 23618231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient nuclear Prospero induces neural progenitor quiescence.
    Lai SL; Doe CQ
    Elife; 2014 Oct; 3():. PubMed ID: 25354199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain.
    Jiang Y; Reichert H
    Neural Dev; 2012 Jan; 7():3. PubMed ID: 22257485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of neural stem cell self-renewal and differentiation by transgenic RNAi in Drosophila.
    Jiang Y; Reichert H
    Arch Biochem Biophys; 2013 Jun; 534(1-2):38-43. PubMed ID: 22906721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period.
    Nassif C; Noveen A; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):417-34. PubMed ID: 12508317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2006 Jan; 494(3):460-75. PubMed ID: 16320256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using MARCM to study Drosophila brain development.
    Viktorin G
    Methods Mol Biol; 2014; 1082():79-96. PubMed ID: 24048928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.
    Kumar A; Fung S; Lichtneckert R; Reichert H; Hartenstein V
    J Comp Neurol; 2009 Nov; 517(1):87-104. PubMed ID: 19711412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development.
    Reichert H
    Results Probl Cell Differ; 2011; 53():529-46. PubMed ID: 21630158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.