BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23541885)

  • 1. Outside and inside angiotensin.
    Luft FC
    J Am Soc Hypertens; 2013; 7(3):253-5. PubMed ID: 23541885
    [No Abstract]   [Full Text] [Related]  

  • 2. Intracellular angiotensin II increases the total potassium current and the resting potential of arterial myocytes from vascular resistance vessels of the rat. Physiological and pathological implications.
    De Mello WC
    J Am Soc Hypertens; 2013; 7(3):192-7. PubMed ID: 23538141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin (1-7) increases the potassium current and the resting potential of arterial myocytes from vascular resistance vessels of normal adult rats: Pathophysiological implications.
    De Mello WC
    J Am Soc Hypertens; 2014 Jan; 8(1):14-20. PubMed ID: 24220548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries.
    Wu CC; Chen SJ; Garland CJ
    Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential role of intracellular angiotensin II.
    Weinberger MH
    J Am Soc Hypertens; 2013; 7(3):191. PubMed ID: 23523136
    [No Abstract]   [Full Text] [Related]  

  • 6. [Potassium agonists].
    Hellwig B
    Med Monatsschr Pharm; 1994 Jun; 17(6):164-7. PubMed ID: 8052166
    [No Abstract]   [Full Text] [Related]  

  • 7. Angiotensin II up-regulates the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF), a regulator of G protein signaling domain-containing RhoGEF, in vascular smooth muscle cells.
    Ying Z; Jin L; Palmer T; Webb RC
    Mol Pharmacol; 2006 Mar; 69(3):932-40. PubMed ID: 16354763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of angiotensin II on renal arteriolar resistances estimated by morphometric analysis.
    Endlich K; Steinhausen M
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F349-51. PubMed ID: 8141335
    [No Abstract]   [Full Text] [Related]  

  • 9. Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation.
    Dimitropoulou C; West L; Field MB; White RE; Reddy LM; Falck JR; Imig JD
    Prostaglandins Other Lipid Mediat; 2007 Feb; 83(1-2):50-61. PubMed ID: 17259072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II potentiates the vasoconstrictive effect of norepinephrine in normotensive and hypertensive man.
    Reams GP; Bauer JH
    J Clin Hypertens; 1987 Dec; 3(4):610-6. PubMed ID: 3453392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.
    Valenzuela F; García-Saisó S; Lemini C; Ramírez-Solares R; Vidrio H; Mendoza-Fernández V
    Vascul Pharmacol; 2005 Aug; 43(2):120-7. PubMed ID: 15958287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPK Dilates Resistance Arteries via Activation of SERCA and BKCa Channels in Smooth Muscle.
    Schneider H; Schubert KM; Blodow S; Kreutz CP; Erdogmus S; Wiedenmann M; Qiu J; Fey T; Ruth P; Lubomirov LT; Pfitzer G; Mederos Y Schnitzler M; Hardie DG; Gudermann T; Pohl U
    Hypertension; 2015 Jul; 66(1):108-16. PubMed ID: 26034200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [1-Sarcosine]-angiotensin II tachyphylaxis in helical strips and everted rings of rabbit aorta.
    Silva EG; Paiva TB
    Braz J Med Biol Res; 1989; 22(9):1145-9. PubMed ID: 2636010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Active sites of anesthetics in the vascular systems].
    Hatano Y; Fukuda S; Akada T; Tuchida H; Nakamura H; Yamazaki M
    Masui; 1999; 48 Suppl():S77-81. PubMed ID: 10785964
    [No Abstract]   [Full Text] [Related]  

  • 15. Ca2+ and Mg-ATP activated potassium channels from rat pulmonary artery.
    Robertson BE; Corry PR; Nye PC; Kozlowski RZ
    Pflugers Arch; 1992 Jun; 421(2-3):94-6. PubMed ID: 1528724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular angiotensin II as a regulator of muscle tone in vascular resistance vessels. Pathophysiological implications.
    De Mello WC
    Peptides; 2016 Apr; 78():87-90. PubMed ID: 26944358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and blocking effects of divalent cations on the calcium-dependent potassium channel of high conductance.
    Zamoyski VL; Serebryakov VN; Schubert R
    Biomed Biochim Acta; 1989; 48(5-6):S388-92. PubMed ID: 2757609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human resistance artery reactivity is altered by liver transplantation and treatment with cyclosporin A.
    Potocnik SJ; Phillips PA; Hardy KJ
    Transplant Proc; 1992 Oct; 24(5):2254-5. PubMed ID: 1413046
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism of angiotensin II stimulation of Na-K-Cl cotransport of vascular smooth muscle cells.
    Owen NE; Ridge KM
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C629-36. PubMed ID: 2508481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of angiotensin, vasopressin and oxytocin on various smooth muscle tissues within the human uteroplacental unit.
    Maigaard S; Forman A; Andersson KE
    Acta Physiol Scand; 1986 Sep; 128(1):23-31. PubMed ID: 3766172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.