These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23541962)
1. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6). Krewerth D; Weidner A; Biermann H Ultrasonics; 2013 Dec; 53(8):1441-9. PubMed ID: 23541962 [TBL] [Abstract][Full Text] [Related]
2. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Chai G; Zhou N Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182 [TBL] [Abstract][Full Text] [Related]
3. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry. Heinz S; Balle F; Wagner G; Eifler D Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114 [TBL] [Abstract][Full Text] [Related]
4. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Pan X; Qian G; Wu S; Fu Y; Hong Y Sci Rep; 2020 Mar; 10(1):4742. PubMed ID: 32179764 [TBL] [Abstract][Full Text] [Related]
5. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios. Mayer H; Fitzka M; Schuller R Ultrasonics; 2013 Dec; 53(8):1425-32. PubMed ID: 23548512 [TBL] [Abstract][Full Text] [Related]
6. On the use of ultrasonic fatigue testing technique--variable amplitude loadings and crack growth monitoring. Müller T; Sander M Ultrasonics; 2013 Dec; 53(8):1417-24. PubMed ID: 23597637 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes. Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816 [TBL] [Abstract][Full Text] [Related]
8. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel. Schönbauer BM; Stanzl-Tschegg SE Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013 [TBL] [Abstract][Full Text] [Related]
9. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy. Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842 [TBL] [Abstract][Full Text] [Related]
10. Influence of Multi-Holes on Fatigue Behaviors of Cast Magnesium Alloys Based on In-Situ Scanning Electron Microscope Technology. Wang XS; Tan CH; Ma J; Zhu XD; Wang QY Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30216982 [TBL] [Abstract][Full Text] [Related]
11. Characterization on Crack Initiation and Early Propagation Region of Nickel-Based Alloys in Very High Cycle Fatigue. Chen Z; Dong Z; Liu C; Dai Y; He C Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079192 [TBL] [Abstract][Full Text] [Related]
12. Crack Initiation Mechanism and Life Prediction of Ti60 Titanium Alloy Considering Stress Ratios Effect in Very High Cycle Fatigue Regime. He R; Peng H; Liu F; Khan MK; Chen Y; He C; Wang C; Wang Q; Liu Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454493 [TBL] [Abstract][Full Text] [Related]
13. Effect of Low Cycle Fatigue Predamage on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy. Nie B; Zhao Z; Ouyang Y; Chen D; Chen H; Sun H; Liu S Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207556 [TBL] [Abstract][Full Text] [Related]
14. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy. Peng Z; Yang S; Wang Z; Gao Z Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806822 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Thermal Fatigue Life and Crack Morphology in Brake Discs of Low-Alloy Steel for High-Speed Trains. Wang J; Chen Y; Zuo L; Zhao H; Ma N Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234177 [TBL] [Abstract][Full Text] [Related]
16. Effect of Wave Process of Plastic Deformation at Forging on the Fatigue Fracture Mechanism of Titanium Compressor Disks of Gas Turbine Engine. Shanyavskiy AA; Soldatenkov AP; Nikitin AD Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917936 [TBL] [Abstract][Full Text] [Related]
17. Quantitative in Situ SEM High Cycle Fatigue: The Critical Role of Oxygen on Nanoscale-Void-Controlled Nucleation and Propagation of Small Cracks in Ni Microbeams. Barrios A; Gupta S; Castelluccio GM; Pierron ON Nano Lett; 2018 Apr; 18(4):2595-2602. PubMed ID: 29489378 [TBL] [Abstract][Full Text] [Related]
18. Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime. Wickmann C; Benz C; Heyer H; Witte-Bodnar K; Schäfer J; Sander M Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576539 [TBL] [Abstract][Full Text] [Related]
19. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738 [TBL] [Abstract][Full Text] [Related]
20. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures. Ahmed S; Schumacher T; Thostenson ET; McConnell J Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]