These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23541981)

  • 21. Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
    Lindenberg V; Mölleken K; Kravets E; Stallmann S; Hegemann JH; Degrandi D; Pfeffer K
    PLoS One; 2017; 12(9):e0185273. PubMed ID: 28945814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.
    Capmany A; Damiani MT
    PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis.
    Ridderhof JC; Barnes RC
    Infect Immun; 1989 Oct; 57(10):3189-93. PubMed ID: 2550371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytochemical localization of glycogen in Chlamydia trachomatis inclusions.
    Chiappino ML; Dawson C; Schachter J; Nichols BA
    J Bacteriol; 1995 Sep; 177(18):5358-63. PubMed ID: 7545158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for diagnostics, and extra-cellular metabolomics and biochemical monitoring.
    Chen Y; Premasiri WR; Ziegler LD
    Sci Rep; 2018 Mar; 8(1):5163. PubMed ID: 29581560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions.
    Rockey DD; Viratyosin W; Bannantine JP; Suchland RJ; Stamm WE
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2497-2505. PubMed ID: 12177343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.
    Moorhead AR; Rzomp KA; Scidmore MA
    Infect Immun; 2007 Feb; 75(2):781-91. PubMed ID: 17101644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous imaging of protonated and deprotonated carbonylcyanide p-trifluoromethoxyphenylhydrazone in live cells by Raman microscopy.
    Yamakoshi H; Palonpon AF; Dodo K; Ando J; Kawata S; Fujita K; Sodeoka M
    Chem Commun (Camb); 2014 Feb; 50(11):1341-3. PubMed ID: 24346645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of Chlamydia trachomatis entry into nonphagocytic cells.
    Hybiske K; Stephens RS
    Infect Immun; 2007 Aug; 75(8):3925-34. PubMed ID: 17502389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of Chlamydia trachomatis in enucleated cells.
    Perara E; Yen TS; Ganem D
    Infect Immun; 1990 Nov; 58(11):3816-8. PubMed ID: 2228252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
    Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D
    PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1.
    Gong S; Lei L; Chang X; Belland R; Zhong G
    Microbiology (Reading); 2011 Apr; 157(Pt 4):1134-1144. PubMed ID: 21233161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation.
    Kokes M; Valdivia RH
    PLoS One; 2015; 10(10):e0139153. PubMed ID: 26426122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival.
    Verbeke P; Welter-Stahl L; Ying S; Hansen J; Häcker G; Darville T; Ojcius DM
    PLoS Pathog; 2006 May; 2(5):e45. PubMed ID: 16710454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway.
    Al-Younes HM; Brinkmann V; Meyer TF
    Infect Immun; 2004 Aug; 72(8):4751-62. PubMed ID: 15271937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization and characterization of GTP-binding protein CT703 in the Chlamydia trachomatis-Infected cells.
    Du K; Wang F; Huo Z; Wang J; Cheng W; Li M; Yu P
    Curr Microbiol; 2011 Feb; 62(2):465-71. PubMed ID: 20725727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.