These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23541981)

  • 41. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.
    Pokrovskaya ID; Szwedo JW; Goodwin A; Lupashina TV; Nagarajan UM; Lupashin VV
    Cell Microbiol; 2012 May; 14(5):656-68. PubMed ID: 22233276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic effect of ultrasound and antibiotics against Chlamydia trachomatis-infected human epithelial cells in vitro.
    Ikeda-Dantsuji Y; Feril LB; Tachibana K; Ogawa K; Endo H; Harada Y; Suzuki R; Maruyama K
    Ultrason Sonochem; 2011 Jan; 18(1):425-30. PubMed ID: 20728399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis.
    Liu W; Wang H; Du J; Jing C
    Biosens Bioelectron; 2017 Nov; 97():70-74. PubMed ID: 28575750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early detection of Chlamydia trachomatis using fluorescent, DNA binding dyes.
    Salari SH; Ward ME
    J Clin Pathol; 1979 Nov; 32(11):1155-62. PubMed ID: 92480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development.
    Fields KA; Mead DJ; Dooley CA; Hackstadt T
    Mol Microbiol; 2003 May; 48(3):671-83. PubMed ID: 12694613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrastructure of the murine cervix following infection with Chlamydia trachomatis.
    Phillips DM; Burillo CA
    Tissue Cell; 1998 Aug; 30(4):446-52. PubMed ID: 9787477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chlamydia psittaci infected cell studies by 4Pi Raman and atomic force microscopy.
    Khalenkow D; Tormo AD; De Meyst A; Van Der Meeren L; Verduijn J; Rybarczyk J; Vanrompay D; Le Thomas N; Skirtach AG
    Microscopy (Oxf); 2024 Feb; ():. PubMed ID: 38527311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low iron availability modulates the course of Chlamydia pneumoniae infection.
    Al-Younes HM; Rudel T; Brinkmann V; Szczepek AJ; Meyer TF
    Cell Microbiol; 2001 Jun; 3(6):427-37. PubMed ID: 11422085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HIV-1 does not significantly influence Chlamydia trachomatis serovar L2 replication in vitro.
    Broadbent A; Horner P; Wills G; Ling A; Carzaniga R; McClure M
    Microbes Infect; 2011 Jun; 13(6):575-84. PubMed ID: 21315827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets.
    Sharma M; Recuero-Checa MA; Fan FY; Dean D
    Cell Microbiol; 2018 Feb; 20(2):. PubMed ID: 29117636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis.
    Al-Younes HM; Al-Zeer MA; Khalil H; Gussmann J; Karlas A; Machuy N; Brinkmann V; Braun PR; Meyer TF
    Autophagy; 2011 Aug; 7(8):814-28. PubMed ID: 21464618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds.
    Heinzen RA; Hackstadt T
    Infect Immun; 1997 Mar; 65(3):1088-94. PubMed ID: 9038320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells.
    Todd WJ; Caldwell HD
    J Infect Dis; 1985 Jun; 151(6):1037-44. PubMed ID: 3889172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlamydia trachomatis induces autophagy by p62 in HeLa cell.
    Wang F; Zhang H; Lu X; Zhu Q; Shi T; Lu R; Yu P; Zhang L; Wang Y
    World J Microbiol Biotechnol; 2021 Feb; 37(3):50. PubMed ID: 33590353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2.
    Tachida Y; Kumagai K; Sakai S; Ando S; Yamaji T; Hanada K
    FEBS Lett; 2020 Feb; 594(3):519-529. PubMed ID: 31596951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 59. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; Gérard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.