These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro. Leonard CA; Schoborg RV; Borel N PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286 [TBL] [Abstract][Full Text] [Related]
84. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Waguia Kontchou C; Tzivelekidis T; Gentle IE; Häcker G Cell Microbiol; 2016 Nov; 18(11):1583-1595. PubMed ID: 27062399 [TBL] [Abstract][Full Text] [Related]
85. Detection of Kunz TC; Götz R; Sauer M; Rudel T Front Cell Infect Microbiol; 2019; 9():276. PubMed ID: 31448242 [TBL] [Abstract][Full Text] [Related]
86. [Confocal Raman microspectroscopic study of human breast morphological elements]. Yu G; Xu XX; Lu SH; Zhang CZ; Song ZF; Zhang CP Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):869-73. PubMed ID: 16883857 [TBL] [Abstract][Full Text] [Related]
87. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. Starnbach MN; Loomis WP; Ovendale P; Regan D; Hess B; Alderson MR; Fling SP J Immunol; 2003 Nov; 171(9):4742-9. PubMed ID: 14568950 [TBL] [Abstract][Full Text] [Related]
93. Chlamydia trachomatis vacuole maturation in infected macrophages. Sun HS; Eng EW; Jeganathan S; Sin AT; Patel PC; Gracey E; Inman RD; Terebiznik MR; Harrison RE J Leukoc Biol; 2012 Oct; 92(4):815-27. PubMed ID: 22807527 [TBL] [Abstract][Full Text] [Related]
94. Exploring subcellular responses of prostate cancer cells to X-ray exposure by Raman mapping. Roman M; Wrobel TP; Panek A; Efeoglu E; Wiltowska-Zuber J; Paluszkiewicz C; Byrne HJ; Kwiatek WM Sci Rep; 2019 Jun; 9(1):8715. PubMed ID: 31213635 [TBL] [Abstract][Full Text] [Related]
95. Multivariate Analysis of Difference Raman Spectra of the Irradiated Nucleus and Cytoplasm Region of SH-SY5Y Human Neuroblastoma Cells. Delfino I; Ricciardi V; Manti L; Lasalvia M; Lepore M Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540064 [TBL] [Abstract][Full Text] [Related]
96. Visualization of Modified Bisarylbutadiyne-Tagged Small Molecules in Live-Cell Nuclei by Stimulated Raman Scattering Microscopy. Kawaguchi M; Yonetani Y; Mizuguchi T; Spratt SJ; Asanuma M; Shimizu H; Sasaki M; Ozeki Y Anal Chem; 2024 Apr; 96(17):6643-6651. PubMed ID: 38626411 [TBL] [Abstract][Full Text] [Related]
97. Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Ahlinder L; Ekstrand-Hammarström B; Geladi P; Osterlund L Biophys J; 2013 Jul; 105(2):310-9. PubMed ID: 23870252 [TBL] [Abstract][Full Text] [Related]
98. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Shi L; Hu F; Min W Nat Commun; 2019 Oct; 10(1):4764. PubMed ID: 31628307 [TBL] [Abstract][Full Text] [Related]
99. Quantitative Raman chemical imaging of intracellular drug-membrane aggregates and small molecule drug precipitates in cytoplasmic organelles. LaLone V; Smith D; Diaz-Espinosa J; Rosania GR Adv Drug Deliv Rev; 2023 Nov; 202():115107. PubMed ID: 37769851 [TBL] [Abstract][Full Text] [Related]
100. Label-Free Tracking of Nanoprodrug Cellular Uptake and Metabolism Using Raman and Autofluorescence Imaging. Machida M; Sugimura T; Kajimoto S; Taemaitree F; Koseki Y; Kasai H; Nakabayashi T J Phys Chem B; 2023 May; 127(17):3851-3860. PubMed ID: 37094294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]