BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23541988)

  • 1. Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition.
    Sheokand N; Kumar S; Malhotra H; Tillu V; Raje CI; Raje M
    Biochim Biophys Acta; 2013 Jun; 1830(6):3816-27. PubMed ID: 23541988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of glyceraldehyde-3-phosphate dehydrogenase as a novel transferrin receptor.
    Kumar S; Sheokand N; Mhadeshwar MA; Raje CI; Raje M
    Int J Biochem Cell Biol; 2012 Jan; 44(1):189-99. PubMed ID: 22062951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moonlighting Protein Glyceraldehyde-3-Phosphate Dehydrogenase: A Cellular Rapid-Response Molecule for Maintenance of Iron Homeostasis in Hypoxia.
    Malhotra H; Kumar M; Chauhan AS; Dhiman A; Chaudhary S; Patidar A; Jaiswal P; Sharma K; Sheokand N; Raje CI; Raje M
    Cell Physiol Biochem; 2019; 52(3):517-531. PubMed ID: 30897319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secreted multifunctional Glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway.
    Chauhan AS; Rawat P; Malhotra H; Sheokand N; Kumar M; Patidar A; Chaudhary S; Jakhar P; Raje CI; Raje M
    Sci Rep; 2015 Dec; 5():18465. PubMed ID: 26672975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment.
    Malhotra H; Sheokand N; Kumar S; Chauhan AS; Kumar M; Jakhar P; Boradia VM; Raje CI; Raje M
    J Biomed Nanotechnol; 2016 May; 12(5):1101-14. PubMed ID: 27305829
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Malhotra H; Patidar A; Boradia VM; Kumar R; Nimbalkar RD; Kumar A; Gani Z; Kaur R; Garg P; Raje M; Raje CI
    Front Cell Infect Microbiol; 2017; 7():245. PubMed ID: 28642848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor.
    Rawat P; Kumar S; Sheokand N; Raje CI; Raje M
    Biochem Cell Biol; 2012 Jun; 90(3):329-38. PubMed ID: 22292499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
    Boradia VM; Raje M; Raje CI
    Biochem Soc Trans; 2014 Dec; 42(6):1796-801. PubMed ID: 25399609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moonlighting cell-surface GAPDH recruits apotransferrin to effect iron egress from mammalian cells.
    Sheokand N; Malhotra H; Kumar S; Tillu VA; Chauhan AS; Raje CI; Raje M
    J Cell Sci; 2014 Oct; 127(Pt 19):4279-91. PubMed ID: 25074810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron.
    Graham RM; Reutens GM; Herbison CE; Delima RD; Chua AC; Olynyk JK; Trinder D
    J Hepatol; 2008 Feb; 48(2):327-34. PubMed ID: 18083267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferrin and transferrin receptor gene expression and iron uptake in hepatocellular carcinoma in the rat.
    Pascale RM; De Miglio MR; Muroni MR; Simile MM; Daino L; Seddaiu MA; Pusceddu S; Gaspa L; Calvisi D; Manenti G; Feo F
    Hepatology; 1998 Feb; 27(2):452-61. PubMed ID: 9462644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron.
    Trinder D; Morgan E
    Hepatology; 1997 Sep; 26(3):691-8. PubMed ID: 9303500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum exposure affects transferrin-dependent and -independent iron uptake by K562 cells.
    PĂ©rez G; Pregi N; Vittori D; Di Risio C; Garbossa G; Nesse A
    Biochim Biophys Acta; 2005 Aug; 1745(1):124-30. PubMed ID: 16085060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions.
    Modun B; Morrissey J; Williams P
    Trends Microbiol; 2000 May; 8(5):231-7. PubMed ID: 10785640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host glyceraldehyde-3-phosphate dehydrogenase-mediated iron acquisition is hijacked by intraphagosomal Mycobacterium tuberculosis.
    Patidar A; Malhotra H; Chaudhary S; Kumar M; Dilawari R; Chaubey GK; Dhiman A; Modanwal R; Talukdar S; Raje CI; Raje M
    Cell Mol Life Sci; 2022 Jan; 79(1):62. PubMed ID: 35001155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis.
    Waheed A; Grubb JH; Zhou XY; Tomatsu S; Fleming RE; Costaldi ME; Britton RS; Bacon BR; Sly WS
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3117-22. PubMed ID: 11867720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron uptake and transferrin endocytosis in undifferentiated and differentiated erythroid cells.
    Hradilek A; Neuwirt J
    Biomed Biochim Acta; 1987; 46(2-3):S141-5. PubMed ID: 3473987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression.
    Trinder D; Zak O; Aisen P
    Hepatology; 1996 Jun; 23(6):1512-20. PubMed ID: 8675172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin.
    Boradia VM; Malhotra H; Thakkar JS; Tillu VA; Vuppala B; Patil P; Sheokand N; Sharma P; Chauhan AS; Raje M; Raje CI
    Nat Commun; 2014 Aug; 5():4730. PubMed ID: 25163484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.