These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23541994)
1. Closing the loop in legged neuromechanics: an open-source computer vision controlled treadmill. Spence AJ; Nicholson-Thomas G; Lampe R J Neurosci Methods; 2013 May; 215(2):164-9. PubMed ID: 23541994 [TBL] [Abstract][Full Text] [Related]
2. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. Sponberg S; Full RJ J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999 [TBL] [Abstract][Full Text] [Related]
3. The consistency of maximum running speed measurements in humans using a feedback-controlled treadmill, and a comparison with maximum attainable speed during overground locomotion. Bowtell MV; Tan H; Wilson AM J Biomech; 2009 Nov; 42(15):2569-74. PubMed ID: 19683240 [TBL] [Abstract][Full Text] [Related]
4. Gait parameters of treadmill versus overground locomotion in mouse. Herbin M; Hackert R; Gasc JP; Renous S Behav Brain Res; 2007 Aug; 181(2):173-9. PubMed ID: 17521749 [TBL] [Abstract][Full Text] [Related]
5. The mathematical description of the body centre of mass 3D path in human and animal locomotion. Minetti AE; Cisotti C; Mian OS J Biomech; 2011 May; 44(8):1471-7. PubMed ID: 21463861 [TBL] [Abstract][Full Text] [Related]
6. Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions. Paolini G; Della Croce U; Riley PO; Newton FK; Casey Kerrigan D Med Eng Phys; 2007 Apr; 29(3):404-11. PubMed ID: 16759895 [TBL] [Abstract][Full Text] [Related]
7. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches. Revzen S; Burden SA; Moore TY; Mongeau JM; Full RJ Biol Cybern; 2013 Apr; 107(2):179-200. PubMed ID: 23371006 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional kinematics and limb kinetic energy of running cockroaches. Kram R; Wong B; Full RJ J Exp Biol; 1997 Jul; 200(Pt 13):1919-29. PubMed ID: 9232006 [TBL] [Abstract][Full Text] [Related]
9. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane-II. Application. Schmitt J; Holmes P Biol Cybern; 2000 Dec; 83(6):517-27. PubMed ID: 11130584 [TBL] [Abstract][Full Text] [Related]
10. Identification of mouse gaits using a novel force-sensing exercise wheel. Smith BJ; Cullingford L; Usherwood JR J Appl Physiol (1985); 2015 Sep; 119(6):704-18. PubMed ID: 26139220 [TBL] [Abstract][Full Text] [Related]
11. Descending control of turning behavior in the cockroach, Blaberus discoidalis. Ridgel AL; Alexander BE; Ritzmann RE J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):385-402. PubMed ID: 17123086 [TBL] [Abstract][Full Text] [Related]
12. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions. Seipel JE; Holmes PJ; Full RJ Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851 [TBL] [Abstract][Full Text] [Related]
13. A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Szczecinski NS; Brown AE; Bender JA; Quinn RD; Ritzmann RE Biol Cybern; 2014 Feb; 108(1):1-21. PubMed ID: 24178847 [TBL] [Abstract][Full Text] [Related]
14. Mechanics of six-legged runners. Full RJ; Tu MS J Exp Biol; 1990 Jan; 148():129-46. PubMed ID: 2307925 [TBL] [Abstract][Full Text] [Related]
15. Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. Bender JA; Simpson EM; Tietz BR; Daltorio KA; Quinn RD; Ritzmann RE J Exp Biol; 2011 Jun; 214(Pt 12):2057-64. PubMed ID: 21613522 [TBL] [Abstract][Full Text] [Related]
16. A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans. Minetti AE; Boldrini L; Brusamolin L; Zamparo P; McKee T J Appl Physiol (1985); 2003 Aug; 95(2):838-43. PubMed ID: 12692139 [TBL] [Abstract][Full Text] [Related]
17. Temporal information for spatially constrained locomotion. de Rugy A; Montagne G; Buekers MJ; Laurent M Exp Brain Res; 2002 Sep; 146(2):129-41. PubMed ID: 12195515 [TBL] [Abstract][Full Text] [Related]
18. Animals prefer leg stiffness values that may reduce the energetic cost of locomotion. Shen Z; Seipel J J Theor Biol; 2015 Jan; 364():433-8. PubMed ID: 25234232 [TBL] [Abstract][Full Text] [Related]
19. A hexapedal jointed-leg model for insect locomotion in the horizontal plane. Kukillaya RP; Holmes PJ Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063 [TBL] [Abstract][Full Text] [Related]
20. The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion. Proctor JL; Holmes P Biol Cybern; 2018 Aug; 112(4):387-401. PubMed ID: 29948143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]