These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23542006)
1. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. Johnson BC; Métifiot M; Ferris A; Pommier Y; Hughes SH J Mol Biol; 2013 Jun; 425(12):2133-46. PubMed ID: 23542006 [TBL] [Abstract][Full Text] [Related]
2. Substrate recognition and motion mode analyses of PFV integrase in complex with viral DNA via coarse-grained models. Hu J; Liu M; Tang D; Chang S PLoS One; 2013; 8(1):e54929. PubMed ID: 23365687 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Johnson BC; Métifiot M; Pommier Y; Hughes SH Antimicrob Agents Chemother; 2012 Jan; 56(1):411-9. PubMed ID: 22037850 [TBL] [Abstract][Full Text] [Related]
4. Study on the interactions between diketo-acid inhibitors and prototype foamy virus integrase-DNA complex via molecular docking and comparative molecular dynamics simulation methods. Hu JP; He HQ; Tang DY; Sun GF; Zhang YQ; Fan J; Chang S J Biomol Struct Dyn; 2013; 31(7):734-47. PubMed ID: 22913375 [TBL] [Abstract][Full Text] [Related]
5. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Serrao E; Krishnan L; Shun MC; Li X; Cherepanov P; Engelman A; Maertens GN Nucleic Acids Res; 2014 Apr; 42(8):5164-76. PubMed ID: 24520116 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC; Krucinski J; Miercke LJ; Finer-Moore JS; Tang AH; Leavitt AD; Stroud RM Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8233-8. PubMed ID: 10890912 [TBL] [Abstract][Full Text] [Related]
7. C-Terminal Domain of Integrase Binds between the Two Active Sites. Roberts VA J Chem Theory Comput; 2015 Sep; 11(9):4500-11. PubMed ID: 26575940 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of a mutant of the HIV-1 integrase zinc finger domain that forms a single conformation. Nomura Y; Masuda T; Kawai G J Biochem; 2006 Apr; 139(4):753-9. PubMed ID: 16672276 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Lee HS; Kang SY; Shin CG Mol Cells; 2005 Apr; 19(2):246-55. PubMed ID: 15879710 [TBL] [Abstract][Full Text] [Related]
10. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition. Guan R; Aiyer S; Cote ML; Xiao R; Jiang M; Acton TB; Roth MJ; Montelione GT Proteins; 2017 Apr; 85(4):647-656. PubMed ID: 28066922 [TBL] [Abstract][Full Text] [Related]
11. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934 [TBL] [Abstract][Full Text] [Related]
12. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Podtelezhnikov AA; Gao K; Bushman FD; McCammon JA Biopolymers; 2003 Jan; 68(1):110-20. PubMed ID: 12579583 [TBL] [Abstract][Full Text] [Related]
13. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Eijkelenboom AP; van den Ent FM; Vos A; Doreleijers JF; Hård K; Tullius TD; Plasterk RH; Kaptein R; Boelens R Curr Biol; 1997 Oct; 7(10):739-46. PubMed ID: 9368756 [TBL] [Abstract][Full Text] [Related]
14. Insight into the binding mode between N-methyl pyrimidones and prototype foamy virus integrase-DNA complex by QM-polarized ligand docking and molecular dynamics simulations. Reddy KK; Singh SK Curr Top Med Chem; 2015; 15(1):43-9. PubMed ID: 25579571 [TBL] [Abstract][Full Text] [Related]
15. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Wang JY; Ling H; Yang W; Craigie R EMBO J; 2001 Dec; 20(24):7333-43. PubMed ID: 11743009 [TBL] [Abstract][Full Text] [Related]
16. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication. Xu Z; Zheng Y; Ao Z; Clement M; Mouland AJ; Kalpana GV; Belhumeur P; Cohen EA; Yao X Retrovirology; 2008 Nov; 5():102. PubMed ID: 19014595 [TBL] [Abstract][Full Text] [Related]
17. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Leo B; Schweimer K; Rösch P; Hartl MJ; Wöhrl BM Retrovirology; 2012 Sep; 9():73. PubMed ID: 22962864 [TBL] [Abstract][Full Text] [Related]
18. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF. Merad H; Porumb H; Zargarian L; René B; Hobaika Z; Maroun RG; Mauffret O; Fermandjian S PLoS One; 2009; 4(1):e4081. PubMed ID: 19119323 [TBL] [Abstract][Full Text] [Related]
19. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Greenwald J; Le V; Butler SL; Bushman FD; Choe S Biochemistry; 1999 Jul; 38(28):8892-8. PubMed ID: 10413462 [TBL] [Abstract][Full Text] [Related]
20. In vitro functional analyses of the human immunodeficiency virus type 1 (HIV-1) integrase mutants give new insights into the intasome assembly. Cellier C; Moreau K; Gallay K; Ballandras A; Gouet P; Ronfort C Virology; 2013 May; 439(2):97-104. PubMed ID: 23473371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]