These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23542006)
41. Defining the DNA substrate binding sites on HIV-1 integrase. Dolan J; Chen A; Weber IT; Harrison RW; Leis J J Mol Biol; 2009 Jan; 385(2):568-79. PubMed ID: 19014951 [TBL] [Abstract][Full Text] [Related]
42. Solution conformation of a peptide corresponding to residues 151-172 of HIV-1 integrase using NMR and CD spectroscopy. Cheng JW; Cheng CC; Lyu PC; Chen ST; Lin TH Int J Pept Protein Res; 1996; 47(1-2):117-22. PubMed ID: 8907508 [TBL] [Abstract][Full Text] [Related]
43. Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. Taddeo B; Carlini F; Verani P; Engelman A J Virol; 1996 Dec; 70(12):8277-84. PubMed ID: 8970947 [TBL] [Abstract][Full Text] [Related]
44. Selection of amino acid substitutions restoring activity of HIV-1 integrase mutated in its catalytic site using the yeast Saccharomyces cerevisiae. Parissi V; Caumont AB; de Soultrait VR; Calmels C; Pichuantes S; Litvak S; Dupont CH J Mol Biol; 2000 Jan; 295(4):755-65. PubMed ID: 10656788 [TBL] [Abstract][Full Text] [Related]
45. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. Lutzke RA; Plasterk RH J Virol; 1998 Jun; 72(6):4841-8. PubMed ID: 9573250 [TBL] [Abstract][Full Text] [Related]
46. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. Tsurutani N; Kubo M; Maeda Y; Ohashi T; Yamamoto N; Kannagi M; Masuda T J Virol; 2000 May; 74(10):4795-806. PubMed ID: 10775618 [TBL] [Abstract][Full Text] [Related]
47. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase. Takahata T; Takeda E; Tobiume M; Tokunaga K; Yokoyama M; Huang YL; Hasegawa A; Shioda T; Sato H; Kannagi M; Masuda T J Virol; 2017 Jan; 91(1):. PubMed ID: 27795445 [TBL] [Abstract][Full Text] [Related]
48. Natural polymorphisms of HIV-1 subtype-C integrase coding region in a large group of ARV-naïve infected individuals. Dimonte S; Babakir-Mina M; Aquaro S; Perno CF Infection; 2013 Dec; 41(6):1097-102. PubMed ID: 23620062 [TBL] [Abstract][Full Text] [Related]
49. Probing Resistance Mutations in Retroviral Integrases by Direct Measurement of Dolutegravir Fluorescence. Thierry E; Lebourgeois S; Simon F; Delelis O; Deprez E Sci Rep; 2017 Oct; 7(1):14067. PubMed ID: 29070877 [TBL] [Abstract][Full Text] [Related]
50. The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Galilee M; Britan-Rosich E; Griner SL; Uysal S; Baumgärtel V; Lamb DC; Kossiakoff AA; Kotler M; Stroud RM; Marx A; Alian A Structure; 2016 Nov; 24(11):1936-1946. PubMed ID: 27692964 [TBL] [Abstract][Full Text] [Related]
51. Identification of residues in the C-terminal domain of HIV-1 integrase that mediate binding to the transportin-SR2 protein. De Houwer S; Demeulemeester J; Thys W; Taltynov O; Zmajkovicova K; Christ F; Debyser Z J Biol Chem; 2012 Oct; 287(41):34059-68. PubMed ID: 22872638 [TBL] [Abstract][Full Text] [Related]
52. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. Yang ZN; Mueser TC; Bushman FD; Hyde CC J Mol Biol; 2000 Feb; 296(2):535-48. PubMed ID: 10669607 [TBL] [Abstract][Full Text] [Related]
53. Characterization of prototype foamy virus gag late assembly domain motifs and their role in particle egress and infectivity. Stange A; Mannigel I; Peters K; Heinkelein M; Stanke N; Cartellieri M; Göttlinger H; Rethwilm A; Zentgraf H; Lindemann D J Virol; 2005 May; 79(9):5466-76. PubMed ID: 15827161 [TBL] [Abstract][Full Text] [Related]
54. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase. Dar MJ; Monel B; Krishnan L; Shun MC; Di Nunzio F; Helland DE; Engelman A Retrovirology; 2009 Oct; 6():94. PubMed ID: 19840380 [TBL] [Abstract][Full Text] [Related]
55. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import. Ao Z; Fowke KR; Cohen EA; Yao X Retrovirology; 2005 Oct; 2():62. PubMed ID: 16232319 [TBL] [Abstract][Full Text] [Related]
56. Structure-based predictors of resistance to the HIV-1 integrase inhibitor Elvitegravir. Masso M; Chuang G; Hao K; Jain S; Vaisman II Antiviral Res; 2014 Jun; 106():5-12. PubMed ID: 24681122 [TBL] [Abstract][Full Text] [Related]
57. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody. Ramcharan J; Colleluori DM; Merkel G; Andrake MD; Skalka AM Retrovirology; 2006 Jun; 3():34. PubMed ID: 16790058 [TBL] [Abstract][Full Text] [Related]
58. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. Zhao Z; McKee CJ; Kessl JJ; Santos WL; Daigle JE; Engelman A; Verdine G; Kvaratskhelia M J Biol Chem; 2008 Feb; 283(9):5632-41. PubMed ID: 18093980 [TBL] [Abstract][Full Text] [Related]
59. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids. Lee CW; Chang J; Lee KJ; Sung YC J Virol; 1994 Apr; 68(4):2708-19. PubMed ID: 8139046 [TBL] [Abstract][Full Text] [Related]
60. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. Maignan S; Guilloteau JP; Zhou-Liu Q; Clément-Mella C; Mikol V J Mol Biol; 1998 Sep; 282(2):359-68. PubMed ID: 9735293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]