These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23542211)

  • 1. Improving the sustainability of granular iron/pumice systems for water treatment.
    Bilardi S; Calabrò PS; Caré S; Moraci N; Noubactep C
    J Environ Manage; 2013 May; 121():133-41. PubMed ID: 23542211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing metallic iron based water filters: Light from methylene blue discoloration.
    Btatkeu-K BD; Tchatchueng JB; Noubactep C; Caré S
    J Environ Manage; 2016 Jan; 166():567-73. PubMed ID: 26518123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of natural organic matter from waters by iron coated pumice.
    Kitis M; Kaplan SS; Karakaya E; Yigit NO; Civelekoglu G
    Chemosphere; 2007 Jan; 66(1):130-8. PubMed ID: 16784768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.
    Calabrò PS; Moraci N; Suraci P
    J Hazard Mater; 2012 Mar; 207-208():111-6. PubMed ID: 21885195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the reactivity of metallic iron for water defluoridation in batch studies.
    Ndé-Tchoupé AI; Nanseu-Njiki CP; Hu R; Nassi A; Noubactep C; Licha T
    Chemosphere; 2019 Mar; 219():855-863. PubMed ID: 30562691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.
    Alver A; Karaarslan M; Kılıç A
    Environ Technol; 2016 Aug; 37(16):2040-7. PubMed ID: 26881482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.
    Kitis M; Kaplan SS
    Chemosphere; 2007 Aug; 68(10):1846-53. PubMed ID: 17462704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the suitability of Fe
    Heimann S; Ndé-Tchoupé AI; Hu R; Licha T; Noubactep C
    Chemosphere; 2018 Oct; 209():578-587. PubMed ID: 29957518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of a zeolitized pumice waste as a low-cost heavy metals adsorbent.
    Catalfamo P; Arrigo I; Primerano P; Corigliano F
    J Hazard Mater; 2006 Jun; 134(1-3):140-3. PubMed ID: 16326003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing laboratory metallic iron columns for better result comparability.
    Noubactep C; Caré S
    J Hazard Mater; 2011 May; 189(3):809-13. PubMed ID: 21470775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of toxic heavy metals by iron-coated starfish.
    Yang JK; Yu MR; Lee SM
    Water Sci Technol; 2007; 56(9):51-7. PubMed ID: 18025731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu
    Bilardi S; Calabrò PS; Moraci N
    Sci Total Environ; 2019 Jul; 675():490-500. PubMed ID: 31030155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method.
    Gurbuz F; Ceylan Ş; Odabaşı M; Codd GA
    Water Res; 2016 Mar; 90():337-343. PubMed ID: 26760486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of Fe(II), Cu(II), Ni(II) and Zn(II) removal in a horizontal rotating tubular bioreactor.
    Rezić T; Zeiner M; Santek B; Novak S
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1067-80. PubMed ID: 21678044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of heavy metals through adsorption using sand.
    Awan MA; Qazi IA; Khalid I
    J Environ Sci (China); 2003 May; 15(3):413-6. PubMed ID: 12938995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.
    Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M
    Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.