These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23542229)

  • 1. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals.
    Wang C; Bai L; Pei Y
    J Environ Manage; 2013 Jun; 122():31-6. PubMed ID: 23542229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrogen sulfide on phosphorus lability in lake sediments amended with drinking water treatment residuals.
    Wang C; Liu J; Pei Y
    Chemosphere; 2013 May; 91(9):1344-8. PubMed ID: 23453604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light, microbial activity, and sediment resuspension on the phosphorus immobilization capability of drinking water treatment residuals in lake sediment.
    Wang C; Pei Y
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8900-8. PubMed ID: 23749370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrification in lake sediment with addition of drinking water treatment residuals.
    Wang C; Liu J; Wang Z; Pei Y
    Water Res; 2014 Jun; 56():234-45. PubMed ID: 24681379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.
    Yuan N; Wang C; Pei Y
    J Environ Sci (China); 2016 Aug; 46():5-15. PubMed ID: 27521931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of anaerobic ammonium oxidation in lake sediment by applying drinking water treatment residuals.
    Wang Z; Wang C; Wang Z; Pei Y
    Bioresour Technol; 2013 Aug; 142():745-9. PubMed ID: 23800683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.
    Makris KC; Harris WG; O'Connor GA; Obreza TA; Elliott HA
    Environ Sci Technol; 2005 Jun; 39(11):4280-9. PubMed ID: 15984811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus sorption and potential phosphorus storage in sediments of Lake Istokpoga and the upper chain of lakes, Florida, USA.
    Belmont MA; White JR; Reddy KR
    J Environ Qual; 2009; 38(3):987-96. PubMed ID: 19329687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.
    Hovsepyan A; Bonzongo JC
    J Hazard Mater; 2009 May; 164(1):73-80. PubMed ID: 18814960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China.
    Han C; Geng J; Ren H; Gao S; Xie X; Wang X
    Environ Sci Technol; 2013 Jun; 47(11):5679-85. PubMed ID: 23647420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.
    Bai L; Wang C; He L; Pei Y
    J Environ Sci (China); 2014 Dec; 26(12):2397-405. PubMed ID: 25499487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of co-application of biosolids and water treatment residuals on corn growth and bioavailable phosphorus and aluminum in alkaline soils in egypt.
    Mahdy AM; Elkhatib EA; Fathi NO; Lin ZQ
    J Environ Qual; 2009; 38(4):1501-10. PubMed ID: 19465726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions.
    Wang S; Jin X; Zhao H; Wu F
    J Hazard Mater; 2009 Jan; 161(2-3):1551-9. PubMed ID: 18555597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.
    Makris KC; Harris WG; O'Connor GA; Obreza TA
    Environ Sci Technol; 2004 Dec; 38(24):6590-6. PubMed ID: 15669316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditions affecting the release of phosphorus from surface lake sediments.
    Christophoridis C; Fytianos K
    J Environ Qual; 2006; 35(4):1181-92. PubMed ID: 16738404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.
    Oliver IW; Grant CD; Murray RS
    J Environ Manage; 2011 Mar; 92(3):960-6. PubMed ID: 21129842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus removal by the multipond system sediments receiving agricultural drainage in a headstream watershed.
    Fu Q; Yin CQ; Ma Y
    J Environ Sci (China); 2005; 17(3):404-8. PubMed ID: 16083112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.
    Zhao Y; Wang C; Wendling LA; Pei Y
    J Agric Food Chem; 2013 Aug; 61(31):7446-52. PubMed ID: 23862625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.