These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23542403)

  • 1. Amputee locomotion: determining the inertial properties of running-specific prostheses.
    Baum BS; Schultz MP; Tian A; Shefter B; Wolf EJ; Kwon HJ; Shim JK
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1776-83. PubMed ID: 23542403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amputee locomotion: spring-like leg behavior and stiffness regulation using running-specific prostheses.
    Hobara H; Baum BS; Kwon HJ; Miller RH; Ogata T; Kim YH; Shim JK
    J Biomech; 2013 Sep; 46(14):2483-9. PubMed ID: 23953671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and analysis of individual with lower extremity amputation locomotion using prosthetic feet and running-specific prostheses.
    Murai A; Hobara H; Hashizume S; Kobayashi Y; Tada M
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():901-904. PubMed ID: 29060018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users.
    Barnett CT; De Asha AR; Skervin TK; Buckley JG; Foster RJ
    Gait Posture; 2022 Oct; 98():153-159. PubMed ID: 36126535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
    Oudenhoven LM; Boes JM; Hak L; Faber GS; Houdijk H
    J Biomech; 2017 Jan; 51():42-48. PubMed ID: 27923481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg stiffness in unilateral transfemoral amputees across a range of running speeds.
    Hobara H; Sakata H; Hashizume S; Kobayashi Y
    J Biomech; 2019 Feb; 84():67-72. PubMed ID: 30587378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'It's more than just a running leg': a qualitative study of running-specific prosthesis use by children and youth with lower limb absence.
    Hadj-Moussa F; Zahid HB; Wright FV; Kelland K; Andrysek J
    Disabil Rehabil; 2022 Nov; 44(23):7190-7198. PubMed ID: 34665069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations.
    Taboga P; Drees EK; Beck ON; Grabowski AM
    Sci Rep; 2020 Feb; 10(1):1763. PubMed ID: 32019938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review.
    Hadj-Moussa F; Ngan CC; Andrysek J
    Gait Posture; 2022 Feb; 92():83-95. PubMed ID: 34837772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Running-specific prostheses reduce lower-limb muscle activity compared to daily-use prostheses in people with unilateral transtibial amputations.
    Sepp LA; Nelson-Wong E; Baum BS; Silverman AK
    J Electromyogr Kinesiol; 2020 Dec; 55():102462. PubMed ID: 33091790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg stiffness of sprinters using running-specific prostheses.
    McGowan CP; Grabowski AM; McDermott WJ; Herr HM; Kram R
    J R Soc Interface; 2012 Aug; 9(73):1975-82. PubMed ID: 22337629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running-specific prosthesis model, stiffness and height affect biomechanics and asymmetry of athletes with unilateral leg amputations across speeds.
    Tacca JR; Beck ON; Taboga P; Grabowski AM
    R Soc Open Sci; 2022 Jun; 9(6):211691. PubMed ID: 35706678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Added lower limb mass does not affect biomechanical asymmetry but increases metabolic power in runners with a unilateral transtibial amputation.
    Alcantara RS; Beck ON; Grabowski AM
    Eur J Appl Physiol; 2020 Jun; 120(6):1449-1456. PubMed ID: 32347372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Running-specific prostheses limit ground-force during sprinting.
    Grabowski AM; McGowan CP; McDermott WJ; Beale MT; Kram R; Herr HM
    Biol Lett; 2010 Apr; 6(2):201-4. PubMed ID: 19889694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg stiffness during sprinting in transfemoral amputees with running-specific prosthesis.
    Sano Y; Makimoto A; Hashizume S; Murai A; Kobayashi Y; Takemura H; Hobara H
    Gait Posture; 2017 Jul; 56():65-67. PubMed ID: 28505545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Prosthetic Alignment on Prosthetic and Total Leg Stiffness While Running With Simulated Running-Specific Prostheses.
    Groothuis A; Houdijk H
    Front Sports Act Living; 2019; 1():16. PubMed ID: 33344940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Mechanical Properties of Running-Specific Prostheses.
    Beck ON; Taboga P; Grabowski AM
    PLoS One; 2016; 11(12):e0168298. PubMed ID: 27973573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower-leg inertial properties in transtibial amputees and control subjects and their influence on the swing phase during gait.
    Selles RW; Korteland S; Van Soest AJ; Bussmann JB; Stam HJ
    Arch Phys Med Rehabil; 2003 Apr; 84(4):569-77. PubMed ID: 12690597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leg stiffness and sprint ability in amputee sprinters.
    Hobara H; Tominaga S; Umezawa S; Iwashita K; Okino A; Saito T; Usui F; Ogata T
    Prosthet Orthot Int; 2012 Sep; 36(3):312-7. PubMed ID: 22918908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.