These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Mechanisms of homeostatic plasticity in the excitatory synapse. Fernandes D; Carvalho AL J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695 [TBL] [Abstract][Full Text] [Related]
24. A molecular approach to the calcium signal in brain: relationship to synaptic modulation and seizure discharge. DeLorenzo RJ Adv Neurol; 1986; 44():435-64. PubMed ID: 3010680 [TBL] [Abstract][Full Text] [Related]
25. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
26. The role of calmodulin as a signal integrator for synaptic plasticity. Xia Z; Storm DR Nat Rev Neurosci; 2005 Apr; 6(4):267-76. PubMed ID: 15803158 [TBL] [Abstract][Full Text] [Related]
27. The extracellular matrix and synapses. Dityatev A; Schachner M Cell Tissue Res; 2006 Nov; 326(2):647-54. PubMed ID: 16767406 [TBL] [Abstract][Full Text] [Related]
28. LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Stanton PK Hippocampus; 1996; 6(1):35-42. PubMed ID: 8878740 [TBL] [Abstract][Full Text] [Related]
29. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537 [TBL] [Abstract][Full Text] [Related]
30. Bidirectional synaptic plasticity induced by conditioned stimulations with different number of pulse at hippocampal CA1 synapses: roles of N-methyl-D-aspartate and metabotropic glutamate receptors. Hsu JC; Cheng SJ; Yang HW; Wang HJ; Chiu TH; Min MY; Lin YW Synapse; 2011 Aug; 65(8):795-803. PubMed ID: 21218453 [TBL] [Abstract][Full Text] [Related]
32. Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Theodosis DT; Piet R; Poulain DA; Oliet SH Neurochem Int; 2004 Sep; 45(4):491-501. PubMed ID: 15186915 [TBL] [Abstract][Full Text] [Related]
33. LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Um JW; Ko J Trends Cell Biol; 2013 Oct; 23(10):465-75. PubMed ID: 23916315 [TBL] [Abstract][Full Text] [Related]
34. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Dahlhaus R; Hines RM; Eadie BD; Kannangara TS; Hines DJ; Brown CE; Christie BR; El-Husseini A Hippocampus; 2010 Feb; 20(2):305-22. PubMed ID: 19437420 [TBL] [Abstract][Full Text] [Related]
35. Changes in Presynaptic Gene Expression during Homeostatic Compensation at a Central Synapse. Harrell ER; Pimentel D; Miesenböck G J Neurosci; 2021 Apr; 41(14):3054-3067. PubMed ID: 33608385 [TBL] [Abstract][Full Text] [Related]
37. Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Keable R; Leshchyns'ka I; Sytnyk V Neuroscientist; 2020; 26(5-6):415-437. PubMed ID: 32449484 [TBL] [Abstract][Full Text] [Related]
38. Non-scaling regulation of AMPA receptors in homeostatic synaptic plasticity. Wang G; Zhong J; Guttieres D; Man HY Neuropharmacology; 2019 Nov; 158():107700. PubMed ID: 31283924 [TBL] [Abstract][Full Text] [Related]
39. Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription. Cortés-Mendoza J; Díaz de León-Guerrero S; Pedraza-Alva G; Pérez-Martínez L Int J Dev Neurosci; 2013 Oct; 31(6):359-69. PubMed ID: 23665156 [TBL] [Abstract][Full Text] [Related]