These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23542454)

  • 1. Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics.
    Borges V; Ferreira R; Nunes A; Sousa-Uva M; Abreu M; Borrego MJ; Gomes JP
    Infect Genet Evol; 2013 Jul; 17():23-32. PubMed ID: 23542454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.
    Borges V; Pinheiro M; Antelo M; Sampaio DA; Vieira L; Ferreira R; Nunes A; Almeida F; Mota LJ; Borrego MJ; Gomes JP
    PLoS One; 2015; 10(7):e0133420. PubMed ID: 26207372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis virulence factor CT135 is stable in vivo but highly polymorphic in vitro.
    Bonner C; Caldwell HD; Carlson JH; Graham MR; Kari L; Sturdevant GL; Tyler S; Zetner A; McClarty G
    Pathog Dis; 2015 Aug; 73(6):ftv043. PubMed ID: 26109550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic features beyond Chlamydia trachomatis phenotypes: what do we think we know?
    Nunes A; Borrego MJ; Gomes JP
    Infect Genet Evol; 2013 Jun; 16():392-400. PubMed ID: 23523596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in Chlamydia trachomatis strains selected in vitro by macrolide passage.
    Zhu H; Wang HP; Jiang Y; Hou SP; Liu YJ; Liu QZ
    Andrologia; 2010 Aug; 42(4):274-80. PubMed ID: 20629652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomes of Chlamydia pneumoniae and C. trachomatis.
    Kalman S; Mitchell W; Marathe R; Lammel C; Fan J; Hyman RW; Olinger L; Grimwood J; Davis RW; Stephens RS
    Nat Genet; 1999 Apr; 21(4):385-9. PubMed ID: 10192388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Chlamydia trachomatis.
    Clarke IN
    Ann N Y Acad Sci; 2011 Aug; 1230():E11-8. PubMed ID: 22239534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimer-enabled transformation of Chlamydia trachomatis.
    Kannan RM; GĂ©rard HC; Mishra MK; Mao G; Wang S; Hali M; Whittum-Hudson JA; Hudson AP
    Microb Pathog; 2013 Dec; 65():29-35. PubMed ID: 24075820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D.
    Rupp J; Solbach W; Gieffers J
    J Antimicrob Chemother; 2008 Jan; 61(1):91-4. PubMed ID: 18033786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [DNA sequence polymorphism of Chlamydia trachomatis omp1 gene].
    Chen LL; Wu YM; Lei D; Wu ZZ; Huang SJ
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):214-8. PubMed ID: 16736579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of resistance to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis.
    Kutlin A; Kohlhoff S; Roblin P; Hammerschlag MR; Riska P
    Antimicrob Agents Chemother; 2005 Mar; 49(3):903-7. PubMed ID: 15728882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates.
    Carlson JH; Hughes S; Hogan D; Cieplak G; Sturdevant DE; McClarty G; Caldwell HD; Belland RJ
    Infect Immun; 2004 Dec; 72(12):7063-72. PubMed ID: 15557630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.
    Demars R; Weinfurter J; Guex E; Lin J; Potucek Y
    J Bacteriol; 2007 Feb; 189(3):991-1003. PubMed ID: 17122345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amoebal host range, host-free survival and disinfection susceptibility of environmental Chlamydiae as compared to Chlamydia trachomatis.
    Coulon C; Eterpi M; Greub G; Collignon A; McDonnell G; Thomas V
    FEMS Immunol Med Microbiol; 2012 Apr; 64(3):364-73. PubMed ID: 22141597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains.
    Carlson JH; Porcella SF; McClarty G; Caldwell HD
    Infect Immun; 2005 Oct; 73(10):6407-18. PubMed ID: 16177312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation and Laboratory Maintenance of Chlamydia trachomatis.
    Scidmore MA
    Curr Protoc Microbiol; 2005 Jul; Chapter 11():Unit 11A.1. PubMed ID: 18770550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of promoters regulating tuf expression in Chlamydia trachomatis serovar F.
    Shen L; Shi Y; Douglas AL; Hatch TP; O'Connell CM; Chen JM; Zhang YX
    Arch Biochem Biophys; 2000 Jul; 379(1):46-56. PubMed ID: 10864440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis diversity viewed as a tissue-specific coevolutionary arms race.
    Nunes A; Nogueira PJ; Borrego MJ; Gomes JP
    Genome Biol; 2008 Oct; 9(10):R153. PubMed ID: 18947394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemical mutagenesis approach to identify virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis.
    Nguyen B; Valdivia R
    Methods Mol Biol; 2014; 1197():347-58. PubMed ID: 25172291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alport syndrome. Molecular genetic aspects.
    Hertz JM
    Dan Med Bull; 2009 Aug; 56(3):105-52. PubMed ID: 19728970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.