These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23542454)

  • 21. The prevalence and distribution of Chlamydia trachomatis genotypes among sexually transmitted disease clinic patients in Guangzhou, China, 2005-2008.
    Yang B; Zheng HP; Feng ZQ; Xue YH; Wu XZ; Huang JM; Xue XJ; Jiang HN
    Jpn J Infect Dis; 2010 Sep; 63(5):342-5. PubMed ID: 20859001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel overlapping coding sequences in Chlamydia trachomatis.
    Jensen KT; Petersen L; Falk S; Iversen P; Andersen P; Theisen M; Krogh A
    FEMS Microbiol Lett; 2006 Dec; 265(1):106-17. PubMed ID: 17038047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis.
    Hua L; Hefty PS; Lee YJ; Lee YM; Stephens RS; Price CW
    Mol Microbiol; 2006 Jan; 59(2):623-36. PubMed ID: 16390455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome.
    Brunelle BW; Sensabaugh GF
    Infect Immun; 2006 Jan; 74(1):578-85. PubMed ID: 16369014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide.
    Igietseme JU; Uriri IM; Chow M; Abe E; Rank RG
    Biochem Biophys Res Commun; 1997 Mar; 232(3):595-601. PubMed ID: 9126319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and validation of a rotor-gene real-time PCR assay for detection, identification, and quantification of Chlamydia trachomatis in a single reaction.
    Jalal H; Stephen H; Curran MD; Burton J; Bradley M; Carne C
    J Clin Microbiol; 2006 Jan; 44(1):206-13. PubMed ID: 16390971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of loci nature on estimating recombination and mutation rates in Chlamydia trachomatis.
    Ferreira R; Borges V; Nunes A; Nogueira PJ; Borrego MJ; Gomes JP
    G3 (Bethesda); 2012 Jul; 2(7):761-8. PubMed ID: 22870399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
    Key CE; Fisher DJ
    Methods Mol Biol; 2017; 1498():163-177. PubMed ID: 27709575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.
    Błażej P; Miasojedow B; Grabińska M; Mackiewicz P
    PLoS One; 2015; 10(6):e0130411. PubMed ID: 26121655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter.
    Agaisse H; Derré I
    PLoS One; 2013; 8(2):e57090. PubMed ID: 23441233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.
    Kokes M; Dunn JD; Granek JA; Nguyen BD; Barker JR; Valdivia RH; Bastidas RJ
    Cell Host Microbe; 2015 May; 17(5):716-25. PubMed ID: 25920978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis.
    Mueller KE; Wolf K; Fields KA
    Curr Protoc Microbiol; 2017 May; 45():11A.3.1-11A.3.15. PubMed ID: 28510361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive global genome dynamics of
    Hadfield J; Harris SR; Seth-Smith HMB; Parmar S; Andersson P; Giffard PM; Schachter J; Moncada J; Ellison L; Vaulet MLG; Fermepin MR; Radebe F; Mendoza S; Ouburg S; Morré SA; Sachse K; Puolakkainen M; Korhonen SJ; Sonnex C; Wiggins R; Jalal H; Brunelli T; Casprini P; Pitt R; Ison C; Savicheva A; Shipitsyna E; Hadad R; Kari L; Burton MJ; Mabey D; Solomon AW; Lewis D; Marsh P; Unemo M; Clarke IN; Parkhill J; Thomson NR
    Genome Res; 2017 Jul; 27(7):1220-1229. PubMed ID: 28588068
    [No Abstract]   [Full Text] [Related]  

  • 34. CT135 mediates the resistance of
    Fernandez MC; Sweeney YC; Suchland RJ; Carrell SJ; Soge OO; Phan IQ; Rockey DD; Patton DL; Hybiske K
    iScience; 2024 Jun; 27(6):110143. PubMed ID: 38947519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The distribution of bacterial doubling times in the wild.
    Gibson B; Wilson DJ; Feil E; Eyre-Walker A
    Proc Biol Sci; 2018 Jun; 285(1880):. PubMed ID: 29899074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infectivity of urogenital Chlamydia trachomatis plasmid-deficient, CT135-null, and double-deficient strains in female mice.
    Sturdevant GL; Zhou B; Carlson JH; Whitmire WM; Song L; Caldwell HD
    Pathog Dis; 2014 Jun; 71(1):90-2. PubMed ID: 24376189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic variant representation in a Chlamydia population is dynamic and adaptive with dependence on in vitro and in vivo passage.
    Jasper DK; Sigar IM; Schripsema JH; Sainvil CK; Smith CL; Yeruva L; Rank RG; Murthy AK; Widder JR; Ramsey KH
    Pathog Dis; 2015 Feb; 73(1):1-12. PubMed ID: 25673672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly.
    Jacquier N; Viollier PH; Greub G
    FEMS Microbiol Rev; 2015 Mar; 39(2):262-75. PubMed ID: 25670734
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.