These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 23542454)

  • 41. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.
    Stephens RS; Kalman S; Lammel C; Fan J; Marathe R; Aravind L; Mitchell W; Olinger L; Tatusov RL; Zhao Q; Koonin EV; Davis RW
    Science; 1998 Oct; 282(5389):754-9. PubMed ID: 9784136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Dynamics and Temperature Adaptation During Experimental Evolution of Obligate Intracellular Bacteria.
    Herrera P; Schuster L; Zojer M; Na H; Schwarz J; Wascher F; Kempinger T; Regner A; Rattei T; Horn M
    Genome Biol Evol; 2023 Aug; 15(8):. PubMed ID: 37515591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction.
    Walsh SC; Reitano JR; Dickinson MS; Kutsch M; Hernandez D; Barnes AB; Schott BH; Wang L; Ko DC; Kim SY; Valdivia RH; Bastidas RJ; Coers J
    Cell Host Microbe; 2022 Dec; 30(12):1671-1684.e9. PubMed ID: 36084633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chlamydial clinical isolates show subtle differences in persistence phenotypes and growth
    Thomas M; Lawrence A; Kroon S; Vodstrcil LA; Phillips S; Hocking JS; Timms P; Huston WM
    Access Microbiol; 2021 Mar; 3(3):000204. PubMed ID: 34151159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-resolution multilocus sequence typing for Chlamydia trachomatis: improved results for clinical samples with low amounts of C. trachomatis DNA.
    Pilo S; Zizelski Valenci G; Rubinstein M; Pichadze L; Scharf Y; Dveyrin Z; Rorman E; Nissan I
    BMC Microbiol; 2021 Jan; 21(1):28. PubMed ID: 33461496
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The multiple functions of the numerous
    Bugalhão JN; Mota LJ
    Microb Cell; 2019 Aug; 6(9):414-449. PubMed ID: 31528632
    [No Abstract]   [Full Text] [Related]  

  • 47. Transcriptional Expression of the
    Korhonen S; Hokynar K; Mannonen L; Paavonen J; Hiltunen-Back E; Puolakkainen M
    Microorganisms; 2019 May; 7(6):. PubMed ID: 31141911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors driving effective population size and pan-genome evolution in bacteria.
    Bobay LM; Ochman H
    BMC Evol Biol; 2018 Oct; 18(1):153. PubMed ID: 30314447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Population-based analysis of ocular Chlamydia trachomatis in trachoma-endemic West African communities identifies genomic markers of disease severity.
    Last AR; Pickering H; Roberts CH; Coll F; Phelan J; Burr SE; Cassama E; Nabicassa M; Seth-Smith HMB; Hadfield J; Cutcliffe LT; Clarke IN; Mabey DCW; Bailey RL; Clark TG; Thomson NR; Holland MJ
    Genome Med; 2018 Feb; 10(1):15. PubMed ID: 29482619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Chlamydia trachomatis Plasmid and CT135 Virulence Factors Are Not Essential for Genital Tract Infection or Pathology in Female Pig-Tailed Macaques.
    Patton DL; Sweeney YC; Baldessari AE; Cles L; Kari L; Sturdevant GL; Yang C; Caldwell HD
    Infect Immun; 2018 May; 86(5):. PubMed ID: 29463617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.
    Brothwell JA; Muramatsu MK; Zhong G; Nelson DE
    Curr Top Microbiol Immunol; 2018; 412():133-158. PubMed ID: 29090367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comprehensive global genome dynamics of
    Hadfield J; Harris SR; Seth-Smith HMB; Parmar S; Andersson P; Giffard PM; Schachter J; Moncada J; Ellison L; Vaulet MLG; Fermepin MR; Radebe F; Mendoza S; Ouburg S; Morré SA; Sachse K; Puolakkainen M; Korhonen SJ; Sonnex C; Wiggins R; Jalal H; Brunelli T; Casprini P; Pitt R; Ison C; Savicheva A; Shipitsyna E; Hadad R; Kari L; Burton MJ; Mabey D; Solomon AW; Lewis D; Marsh P; Unemo M; Clarke IN; Parkhill J; Thomson NR
    Genome Res; 2017 Jul; 27(7):1220-1229. PubMed ID: 28588068
    [No Abstract]   [Full Text] [Related]  

  • 53. Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs.
    Wanninger S; Donati M; Di Francesco A; Hässig M; Hoffmann K; Seth-Smith HM; Marti H; Borel N
    PLoS One; 2016; 11(11):e0166917. PubMed ID: 27893834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.
    Joseph SJ; Marti H; Didelot X; Read TD; Dean D
    Genome Biol Evol; 2016 Sep; 8(8):2613-23. PubMed ID: 27576537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Chromosome-Encoded Hypothetical Protein TC0668 Is an Upper Genital Tract Pathogenicity Factor of Chlamydia muridarum.
    Conrad TA; Gong S; Yang Z; Matulich P; Keck J; Beltrami N; Chen C; Zhou Z; Dai J; Zhong G
    Infect Immun; 2016 Feb; 84(2):467-79. PubMed ID: 26597987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trachoma and Ocular Chlamydial Infection in the Era of Genomics.
    Derrick T; Roberts Ch; Last AR; Burr SE; Holland MJ
    Mediators Inflamm; 2015; 2015():791847. PubMed ID: 26424969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.
    Borges V; Pinheiro M; Antelo M; Sampaio DA; Vieira L; Ferreira R; Nunes A; Almeida F; Mota LJ; Borrego MJ; Gomes JP
    PLoS One; 2015; 10(7):e0133420. PubMed ID: 26207372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum.
    Bachmann NL; Sullivan MJ; Jelocnik M; Myers GS; Timms P; Polkinghorne A
    J Clin Microbiol; 2015 May; 53(5):1573-81. PubMed ID: 25740768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro passage selects for Chlamydia muridarum with enhanced infectivity in cultured cells but attenuated pathogenicity in mouse upper genital tract.
    Chen C; Zhou Z; Conrad T; Yang Z; Dai J; Li Z; Wu Y; Zhong G
    Infect Immun; 2015 May; 83(5):1881-92. PubMed ID: 25712926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic variant representation in a Chlamydia population is dynamic and adaptive with dependence on in vitro and in vivo passage.
    Jasper DK; Sigar IM; Schripsema JH; Sainvil CK; Smith CL; Yeruva L; Rank RG; Murthy AK; Widder JR; Ramsey KH
    Pathog Dis; 2015 Feb; 73(1):1-12. PubMed ID: 25673672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.