These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23542599)

  • 1. The foliar uptake and downward translocation of trichloroethylene and 1,2,3-trichlorobenzene in air-plant-water systems.
    Su Y; Liang Y
    J Hazard Mater; 2013 May; 252-253():300-5. PubMed ID: 23542599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport via xylem of trichloroethylene in wheat, corn, and tomato seedlings.
    Su YH; Liu T; Liang YC
    J Hazard Mater; 2010 Oct; 182(1-3):472-6. PubMed ID: 20619535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum).
    Su Y; Liang Y
    J Hazard Mater; 2015 Jun; 291():120-8. PubMed ID: 25771217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of mixed organic contaminants in uptake by rice seedlings.
    Su Y; Zhu Y; Liang Y
    Chemosphere; 2009 Feb; 74(7):890-5. PubMed ID: 19095283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Zea mays L. in phytoremediation of trichloroethylene.
    Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses.
    Ge C; Ding Y; Wang Z; Wan D; Wang Y; Shang Q; Luo S
    J Environ Sci (China); 2009; 21(6):806-13. PubMed ID: 19803087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat.
    Avellan A; Yun J; Zhang Y; Spielman-Sun E; Unrine JM; Thieme J; Li J; Lombi E; Bland G; Lowry GV
    ACS Nano; 2019 May; 13(5):5291-5305. PubMed ID: 31074967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress.
    Ge C; Wan D; Wang Z; Ding Y; Wang Y; Shang Q; Ma F; Luo S
    J Environ Sci (China); 2008; 20(3):309-19. PubMed ID: 18595398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?
    Zhan XH; Ma HL; Zhou LX; Liang JR; Jiang TH; Xu GH
    BMC Plant Biol; 2010 Mar; 10():52. PubMed ID: 20307286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term toxic effects of chlorobenzenes on broadbean (Vicia faba) seedlings.
    Liu W; Li P; Zhou Q; Sun T; Tai P; Xu H
    Sci China C Life Sci; 2005 May; 48 Suppl 1():33-9. PubMed ID: 16089327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants.
    Li H; Sheng G; Chiou CT; Xu O
    Environ Sci Technol; 2005 Jul; 39(13):4864-70. PubMed ID: 16053085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms.
    Qin K; Struckhoff GC; Agrawal A; Shelley ML; Dong H
    Chemosphere; 2015 Jan; 119():971-977. PubMed ID: 25303656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure.
    Lu K; Shen D; Liu X; Dong S; Jing X; Wu W; Tong Y; Gao S; Mao L
    Chemosphere; 2020 Nov; 259():127445. PubMed ID: 32593005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat.
    Erenoglu EB; Kutman UB; Ceylan Y; Yildiz B; Cakmak I
    New Phytol; 2011 Jan; 189(2):438-48. PubMed ID: 21029104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.
    Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J
    Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and translocation of 198Hg in four crop species.
    Cui L; Feng X; Lin CJ; Wang X; Meng B; Wang X; Wang H
    Environ Toxicol Chem; 2014 Feb; 33(2):334-40. PubMed ID: 24173818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.