These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23542673)

  • 1. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.
    Ulanowski TA; Branfireun BA
    Sci Total Environ; 2013 Jun; 454-455():211-8. PubMed ID: 23542673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in peatland porewater chemistry over time and space along a bog to fen gradient.
    Griffiths NA; Sebestyen SD; Oleheiser KC
    Sci Total Environ; 2019 Dec; 697():134152. PubMed ID: 31487589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquifer depressurization and water table lowering induces landscape scale subsidence and hydrophysical change in peatlands of the Hudson Bay Lowlands.
    Balliston NE; Price JS
    Sci Total Environ; 2023 Jan; 855():158837. PubMed ID: 36116649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.
    Dieleman CM; Branfireun BA; McLaughlin JW; Lindo Z
    Glob Chang Biol; 2015 Jan; 21(1):388-95. PubMed ID: 24957384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.
    Gaffney PPJ; Hancock MH; Taggart MA; Andersen R
    J Environ Manage; 2018 Aug; 219():239-251. PubMed ID: 29751255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional variation in the biogeochemical and physical characteristics of natural peatland pools.
    Turner TE; Billett MF; Baird AJ; Chapman PJ; Dinsmore KJ; Holden J
    Sci Total Environ; 2016 Mar; 545-546():84-94. PubMed ID: 26745296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.
    Olefeldt D; Roulet NT
    Glob Chang Biol; 2014 Oct; 20(10):3122-36. PubMed ID: 24753046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification.
    Soudzilovskaia NA; Cornelissen JH; During HJ; van Logtestijn RS; Lang SI; Aerts R
    Ecology; 2010 Sep; 91(9):2716-26. PubMed ID: 20957965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland.
    Lin X; Green S; Tfaily MM; Prakash O; Konstantinidis KT; Corbett JE; Chanton JP; Cooper WT; Kostka JE
    Appl Environ Microbiol; 2012 Oct; 78(19):7023-31. PubMed ID: 22843538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition.
    Yang Q; Liu Z; Bai E
    Glob Chang Biol; 2023 Nov; 29(22):6350-6366. PubMed ID: 37602716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.
    Fan Z; David McGuire A; Turetsky MR; Harden JW; Michael Waddington J; Kane ES
    Glob Chang Biol; 2013 Feb; 19(2):604-20. PubMed ID: 23504796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental controls of C, N and P biogeochemistry in peatland pools.
    Arsenault J; Talbot J; Moore TR
    Sci Total Environ; 2018 Aug; 631-632():714-722. PubMed ID: 29544176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota.
    Hill BH; Jicha TM; Lehto LLP; Elonen CM; Sebestyen SD; Kolka RK
    Sci Total Environ; 2016 Apr; 550():880-892. PubMed ID: 26851760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute depletion and reduced hydrological connectivity in subarctic patterned peatlands disturbed by mine dewatering.
    Balliston N; Sutton O; Price J
    Sci Total Environ; 2024 Feb; 913():169442. PubMed ID: 38157899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial CO
    Balogun O; Bello R; Higuchi K
    Sci Total Environ; 2023 Jun; 875():162591. PubMed ID: 36906026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate-driven spatial and temporal patterns in peatland pool biogeochemistry.
    Arsenault J; Talbot J; Brown LE; Helbig M; Holden J; Hoyos-Santillan J; Jolin É; Mackenzie R; Martinez-Cruz K; Sepulveda-Jauregui A; Lapierre JF
    Glob Chang Biol; 2023 Jul; 29(14):4056-4068. PubMed ID: 37114848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAPID CARBON RESPONSE OF PEATLANDS TO CLIMATE CHANGE.
    Bridgham SD; Pastor J; Dewey B; Weltzin JF; Updegraff K
    Ecology; 2008 Nov; 89(11):3041-3048. PubMed ID: 31766807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of inorganic ions and dissolved organic matter in different types of peat bogs and its ecological significance.
    Deng SY; Chen YB; Yu K; Yu ZG
    Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):571-580. PubMed ID: 33650367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revegetation of peat excavations in a derelict raised bog.
    Jane Smart P; Wheeler BD; Willis AJ
    New Phytol; 1989 Apr; 111(4):733-748. PubMed ID: 33874073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires.
    Kolari THM; Tahvanainen T
    Ecol Evol; 2023 Apr; 13(4):e9988. PubMed ID: 37082320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.