These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23542673)

  • 21. Seasonal influences on the ecology of testate amoebae (Protozoa) in a small Sphagnum peatland in southern Ontario, Canada.
    Warner BG; Asada T; Quinn NP
    Microb Ecol; 2007 Jul; 54(1):91-100. PubMed ID: 17333427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal variability in the relationship between water colour and dissolved organic carbon in blanket peat pore waters.
    Wallage ZE; Holden J
    Sci Total Environ; 2010 Nov; 408(24):6235-42. PubMed ID: 20888621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters.
    Krachler R; Krachler RF; Wallner G; Steier P; El Abiead Y; Wiesinger H; Jirsa F; Keppler BK
    Sci Total Environ; 2016 Jun; 556():53-62. PubMed ID: 26971209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical and Phytocoenological Characteristics of Two Different Slovak Peatlands.
    Fazekašová D; Barančíková G; Fazekaš J; Štofejová L; Halas J; Litavec T; Liptaj T
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential biogeochemical and ecological development of a flooded tailings impoundment at the Kristineberg Zn-Cu mine, northern Sweden.
    Widerlund A; Ebenå G; Landin J
    Sci Total Environ; 2004 Oct; 333(1-3):249-66. PubMed ID: 15364533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate-driven spatial and temporal patterns in peatland pool biogeochemistry.
    Arsenault J; Talbot J; Brown LE; Helbig M; Holden J; Hoyos-Santillan J; Jolin É; Mackenzie R; Martinez-Cruz K; Sepulveda-Jauregui A; Lapierre JF
    Glob Chang Biol; 2023 Jul; 29(14):4056-4068. PubMed ID: 37114848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of Viral Abundance and Diversity in a Sphagnum-Dominated Peatland: Temporal Fluctuations Prevail Over Habitat.
    Ballaud F; Dufresne A; Francez AJ; Colombet J; Sime-Ngando T; Quaiser A
    Front Microbiol; 2015; 6():1494. PubMed ID: 26779149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water pollution risks by smoldering fires in degraded peatlands.
    Liu H; Zak D; Zableckis N; Cossmer A; Langhammer N; Meermann B; Lennartz B
    Sci Total Environ; 2023 May; 871():161979. PubMed ID: 36739030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of moisture and temperature variation on DOC release from a peatland: conflicting results from laboratory, field and historical data analysis.
    Preston MD; Eimers MC; Watmough SA
    Sci Total Environ; 2011 Mar; 409(7):1235-42. PubMed ID: 21237500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of simulated drought on pore water chemistry of peatlands.
    Juckers M; Watmough SA
    Environ Pollut; 2014 Jan; 184():73-80. PubMed ID: 24035912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant communities control long term carbon accumulation and biogeochemical gradients in a Patagonian bog.
    Mathijssen PJH; Gałka M; Borken W; Knorr KH
    Sci Total Environ; 2019 Sep; 684():670-681. PubMed ID: 31158628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal variations in surface water chemistry at disturbed and pristine peatland sites in the Flow Country of northern Scotland.
    Muller FL; Tankéré-Muller SP
    Sci Total Environ; 2012 Oct; 435-436():351-62. PubMed ID: 22863811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature responses to infrared-loading and water table manipulations in peatland mesocosms.
    Chen J; Bridgham S; Keller J; Pastor J; Noormets A; Weltzin JF
    J Integr Plant Biol; 2008 Nov; 50(11):1484-96. PubMed ID: 19017134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerated vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change.
    Kolari THM; Korpelainen P; Kumpula T; Tahvanainen T
    Ecol Evol; 2021 Jun; 11(12):7602-7621. PubMed ID: 34188838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic retention and release in ombrotrophic peatlands.
    Rothwell JJ; Taylor KG; Ander EL; Evans MG; Daniels SM; Allott TE
    Sci Total Environ; 2009 Feb; 407(4):1405-17. PubMed ID: 19010516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methane emissions dynamics from a constructed fen and reference sites in the Athabasca Oil Sands Region, Alberta.
    Murray KR; Barlow N; Strack M
    Sci Total Environ; 2017 Apr; 583():369-381. PubMed ID: 28117165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental factors explaining the vegetation patterns in a temperate peatland.
    Pellerin S; Lagneau LA; Lavoie M; Larocque M
    C R Biol; 2009 Aug; 332(8):720-31. PubMed ID: 19632655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation.
    Packalen MS; Finkelstein SA; McLaughlin JW
    Nat Commun; 2014 Jun; 5():4078. PubMed ID: 24916043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Landscape analysis of nutrient-enriched margins (lagg) in ombrotrophic peatlands.
    Langlois MN; Price JS; Rochefort L
    Sci Total Environ; 2015 Feb; 505():573-86. PubMed ID: 25461060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissolved organic carbon in a constructed and natural fens in the Athabasca oil sands region, Alberta, Canada.
    Khadka B; Munir TM; Strack M
    Sci Total Environ; 2016 Jul; 557-558():579-89. PubMed ID: 27037879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.