BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23542905)

  • 1. Spatial discrimination and visual discrimination: two methods evaluating learning and memory in juvenile Göttingen minipigs.
    Haagensen AM; Grand N; Klastrup S; Skytte C; Sørensen DB
    Behav Pharmacol; 2013 Jun; 24(3):172-9. PubMed ID: 23542905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminations, reversals, and extra-dimensional shifts in the Göttingen minipig.
    Moustgaard A; Arnfred SM; Lind NM; Hansen AK; Hemmingsen R
    Behav Processes; 2004 Jul; 67(1):27-37. PubMed ID: 15182923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of visually guided conditional associative tasks in Göttingen minipigs.
    Moustgaard A; Arnfred SM; Lind NM; Hemmingsen R; Hansen AK
    Behav Processes; 2005 Jan; 68(1):97-102. PubMed ID: 15639390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of learning ability and memory retention in altricial (Bengalese finch, Lonchura striata var. domestica) and precocial (blue-breasted quail, Coturnix chinensis) birds using a color discrimination task.
    Ueno A; Suzuki K
    Anim Sci J; 2014 Feb; 85(2):186-92. PubMed ID: 23865600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel spatial Delayed Non-Match to Sample (DNMS) task in the Göttingen minipig.
    Nielsen TR; Kornum BR; Moustgaard A; Gade A; Lind NM; Knudsen GM
    Behav Brain Res; 2009 Jan; 196(1):93-8. PubMed ID: 18706937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Working and reference memory of pigs in the spatial holeboard discrimination task.
    Arts JW; van der Staay FJ; Ekkel ED
    Behav Brain Res; 2009 Dec; 205(1):303-6. PubMed ID: 19539660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs.
    Kornum BR; Thygesen KS; Nielsen TR; Knudsen GM; Lind NM
    Behav Brain Res; 2007 Aug; 181(2):210-7. PubMed ID: 17524499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual-spatial learning and memory in schizotypal personality disorder: continued evidence for the importance of working memory in the schizophrenia spectrum.
    McClure MM; Romero MJ; Bowie CR; Reichenberg A; Harvey PD; Siever LJ
    Arch Clin Neuropsychol; 2007 Jan; 22(1):109-16. PubMed ID: 17161580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of gender on working and spatial memory in the novel object recognition task in the rat.
    Sutcliffe JS; Marshall KM; Neill JC
    Behav Brain Res; 2007 Feb; 177(1):117-25. PubMed ID: 17123641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task.
    Jolicoeur P; Brisson B; Robitaille N
    Brain Res; 2008 Jun; 1215():160-72. PubMed ID: 18482718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).
    Bogale BA; Sugawara S; Sakano K; Tsuda S; Sugita S
    Anim Cogn; 2012 Mar; 15(2):285-91. PubMed ID: 21792628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential spatial frequency discrimination is consistently impaired among adult dyslexics.
    Ben-Yehudah G; Ahissar M
    Vision Res; 2004 May; 44(10):1047-63. PubMed ID: 15031099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to novelty correlates with learning rate in a Go/No-go task in Göttingen minipigs.
    Lind NM; Moustgaard A
    Neural Plast; 2005; 12(4):341-5. PubMed ID: 16444904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The COGITAT holeboard system as a valuable tool to assess learning, memory and activity in mice.
    Post AM; Wultsch T; Popp S; Painsipp E; Wetzstein H; Kittel-Schneider S; Sontag TA; Lesch KP; Reif A
    Behav Brain Res; 2011 Jun; 220(1):152-8. PubMed ID: 21310188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive performance of Göttingen minipigs is affected by diet in a spatial hole-board discrimination test.
    Haagensen AM; Klein AB; Ettrup A; Matthews LR; Sørensen DB
    PLoS One; 2013; 8(11):e79429. PubMed ID: 24223947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple spatial frequency channels in human visual perceptual memory.
    Nemes VA; Whitaker D; Heron J; McKeefry DJ
    Vision Res; 2011 Dec; 51(23-24):2331-9. PubMed ID: 21930142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual learning improves efficiency by re-tuning the decision 'template' for position discrimination.
    Li RW; Levi DM; Klein SA
    Nat Neurosci; 2004 Feb; 7(2):178-83. PubMed ID: 14730311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of working memory in spatial contextual cueing.
    Travis SL; Mattingley JB; Dux PE
    J Exp Psychol Learn Mem Cogn; 2013 Jan; 39(1):208-19. PubMed ID: 22642237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral phenotyping of minipigs transgenic for the Huntington gene.
    Schramke S; Schuldenzucker V; Schubert R; Frank F; Wirsig M; Ott S; Motlik J; Fels M; Kemper N; Hölzner E; Reilmann R
    J Neurosci Methods; 2016 May; 265():34-45. PubMed ID: 26688470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of the systems for color and spatial manipulation in working memory revealed by a dual-task procedure.
    Mohr HM; Linden DE
    J Cogn Neurosci; 2005 Feb; 17(2):355-66. PubMed ID: 15811245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.