BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23542934)

  • 1. Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection.
    Wax A; Chalut KJ
    Stud Health Technol Inform; 2013; 185():129-51. PubMed ID: 23542934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection.
    Wax A; Chalut KJ
    Anal Cell Pathol (Amst); 2011; 34(5):207-22. PubMed ID: 21988885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry.
    Pyhtila JW; Chalut KJ; Boyer JD; Keener J; D'Amico T; Gottfried M; Gress F; Wax A
    Gastrointest Endosc; 2007 Mar; 65(3):487-91. PubMed ID: 17321252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier domain multispectral multiple scattering low coherence interferometry.
    Matthews TE; Giacomelli MG; Brown WJ; Wax A
    Appl Opt; 2013 Dec; 52(34):8220-8. PubMed ID: 24513821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology.
    Ho D; Drake TK; Smith-McCune KK; Darragh TM; Hwang LY; Wax A
    Int J Cancer; 2017 Mar; 140(6):1447-1456. PubMed ID: 27883177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.
    Chalut KJ; Chen S; Finan JD; Giacomelli MG; Guilak F; Leong KW; Wax A
    Biophys J; 2008 Jun; 94(12):4948-56. PubMed ID: 18326642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of intestinal dysplasia using angle-resolved low coherence interferometry.
    Terry N; Zhu Y; Thacker JK; Migaly J; Guy C; Mantyh CR; Wax A
    J Biomed Opt; 2011 Oct; 16(10):106002. PubMed ID: 22029349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry.
    Wax A; Pyhtila JW; Graf RN; Nines R; Boone CW; Dasari RR; Feld MS; Steele VE; Stoner GD
    J Biomed Opt; 2005; 10(5):051604. PubMed ID: 16292952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.
    Wax A; Yang C; Müller MG; Nines R; Boone CW; Steele VE; Stoner GD; Dasari RR; Feld MS
    Cancer Res; 2003 Jul; 63(13):3556-9. PubMed ID: 12839941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.
    Chalut KJ; Kresty LA; Pyhtila JW; Nines R; Baird M; Steele VE; Wax A
    Cancer Epidemiol Biomarkers Prev; 2007 Feb; 16(2):223-7. PubMed ID: 17301253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging beyond the ballistic limit in coherence imaging using multiply scattered light.
    Giacomelli MG; Wax A
    Opt Express; 2011 Feb; 19(5):4268-79. PubMed ID: 21369257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy.
    Pyhtila JW; Boyer JD; Chalut KJ; Wax A
    Opt Lett; 2006 Mar; 31(6):772-4. PubMed ID: 16544619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry.
    Pyhtila JW; Ma H; Simnick AJ; Chilkoti A; Wax A
    J Biomed Opt; 2006; 11(3):34022. PubMed ID: 16822071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    J Biomed Opt; 2007; 12(2):024020. PubMed ID: 17477735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular-domain scattering interferometry.
    Shipp DW; Qian R; Berger AJ
    Opt Lett; 2013 Nov; 38(22):4750-3. PubMed ID: 24322123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index.
    Na J; Choi HY; Choi ES; Lee C; Lee BH
    Appl Opt; 2009 May; 48(13):2461-7. PubMed ID: 19412203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial angular filter arrays for angle-resolved scattering spectroscopy.
    Zhang Y; Vasefi F; Najiminaini M; Kaminska B; Carson JJ
    Opt Express; 2013 Feb; 21(3):2928-41. PubMed ID: 23481751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology.
    Zhang H; Steelman ZA; Ho DS; Chu KK; Wax A
    J Biophotonics; 2019 Feb; 12(2):e201800258. PubMed ID: 30239148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.
    Zhu Y; Terry NG; Woosley JT; Shaheen NJ; Wax A
    J Biomed Opt; 2011; 16(1):011003. PubMed ID: 21280890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning system for angle-resolved low-coherence interferometry.
    Steelman ZA; Ho D; Chu KK; Wax A
    Opt Lett; 2017 Nov; 42(22):4581-4584. PubMed ID: 29140317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.