These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23543616)

  • 1. CASK and CaMKII function in the mushroom body α'/β' neurons during Drosophila memory formation.
    Malik BR; Gillespie JM; Hodge JJ
    Front Neural Circuits; 2013; 7():52. PubMed ID: 23543616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CASK and CaMKII function in Drosophila memory.
    Malik BR; Hodge JJ
    Front Neurosci; 2014; 8():178. PubMed ID: 25009461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning.
    Gillespie JM; Hodge JJ
    Front Mol Neurosci; 2013; 6():27. PubMed ID: 24062638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between amyloid precursor protein-like (APPL) and MAGUK scaffolding proteins contribute to appetitive long-term memory in
    Silva B; Niehage C; Maglione M; Hoflack B; Sigrist SJ; Wassmer T; Pavlowsky A; Preat T
    J Neurogenet; 2020 Mar; 34(1):92-105. PubMed ID: 31965876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK.
    Hodge JJ; Mullasseril P; Griffith LC
    Neuron; 2006 Aug; 51(3):327-37. PubMed ID: 16880127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of an early memory trace in the Drosophila mushroom body.
    Wang Y; Mamiya A; Chiang AS; Zhong Y
    J Neurosci; 2008 Apr; 28(17):4368-76. PubMed ID: 18434515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise control of fasciclin II expression is required for adult mushroom body development in Drosophila.
    Fushima K; Tsujimura H
    Dev Growth Differ; 2007 Apr; 49(3):215-27. PubMed ID: 17394600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-independent calcium/calmodulin-dependent protein kinase II in the adult Drosophila CNS enhances the training of pheromonal cues.
    Mehren JE; Griffith LC
    J Neurosci; 2004 Nov; 24(47):10584-93. PubMed ID: 15564574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation.
    Lu CS; Hodge JJ; Mehren J; Sun XX; Griffith LC
    Neuron; 2003 Dec; 40(6):1185-97. PubMed ID: 14687552
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Roussou IG; Papanikolopoulou K; Savakis C; Skoulakis EMC
    J Neurosci; 2019 Oct; 39(44):8730-8743. PubMed ID: 31530645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength.
    Barcomb K; Buard I; Coultrap SJ; Kulbe JR; O'Leary H; Benke TA; Bayer KU
    FASEB J; 2014 Aug; 28(8):3810-9. PubMed ID: 24843070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.
    Mizunami M; Nemoto Y; Terao K; Hamanaka Y; Matsumoto Y
    PLoS One; 2014; 9(9):e107442. PubMed ID: 25215889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II.
    Sun XX; Hodge JJ; Zhou Y; Nguyen M; Griffith LC
    J Biol Chem; 2004 Mar; 279(11):10206-14. PubMed ID: 14699099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep.
    Adel M; Chen N; Zhang Y; Reed ML; Quasney C; Griffith LC
    J Neurosci; 2022 May; 42(21):4297-4310. PubMed ID: 35474278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System-like consolidation of olfactory memories in Drosophila.
    Cervantes-Sandoval I; Martin-Peña A; Berry JA; Davis RL
    J Neurosci; 2013 Jun; 33(23):9846-54. PubMed ID: 23739981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differential requirement of mushroom body α/β subdivisions in long-term memory retrieval in Drosophila.
    Huang C; Wang P; Xie Z; Wang L; Zhong Y
    Protein Cell; 2013 Jul; 4(7):512-9. PubMed ID: 23722532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time single-molecule imaging of CaMKII-calmodulin interactions.
    Khan S; Molloy JE; Puhl H; Schulman H; Vogel SS
    Biophys J; 2024 Apr; 123(7):824-838. PubMed ID: 38414237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation.
    Keene AC; Krashes MJ; Leung B; Bernard JA; Waddell S
    Curr Biol; 2006 Aug; 16(15):1524-30. PubMed ID: 16890528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatial model of autophosphorylation of Ca
    Bartol TM; Ordyan M; Sejnowski TJ; Rangamani P; Kennedy MB
    bioRxiv; 2024 Jul; ():. PubMed ID: 38352446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.