These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23543893)

  • 1. Radiative and Non-Radiative Lifetime Engineering of Quantum Dots in Multiple Solvents by Surface Atom Stoichiometry and Ligands.
    Omogo B; Aldana JF; Heyes CD
    J Phys Chem C Nanomater Interfaces; 2013 Feb; 117(5):2317-2327. PubMed ID: 23543893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots.
    Califano M
    ACS Nano; 2015 Mar; 9(3):2960-7. PubMed ID: 25716138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
    Boehme SC; Azpiroz JM; Aulin YV; Grozema FC; Vanmaekelbergh D; Siebbeles LD; Infante I; Houtepen AJ
    Nano Lett; 2015 May; 15(5):3056-66. PubMed ID: 25853555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.
    Woo Choi J; Woo HC; Huang X; Jung WG; Kim BJ; Jeon SW; Yim SY; Lee JS; Lee CL
    Nanoscale; 2018 Jul; 10(28):13356-13367. PubMed ID: 29785443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast carrier dynamics in Ag-CdTe hybrid nanostructure: non-radiative and radiative relaxations.
    Gurung S; Khatua DP; Singh A; Jayabalan J
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33721844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots.
    Espinobarro-Velazquez D; Leontiadou MA; Page RC; Califano M; O'Brien P; Binks DJ
    Chemphyschem; 2015 Apr; 16(6):1239-44. PubMed ID: 25630838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots.
    Richardson A; Alster J; Khoroshyy P; Psencik J; Valenta J; Tuma R; Critchley K
    ACS Omega; 2024 Apr; 9(15):17114-17124. PubMed ID: 38645370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.
    Knowles KE; McArthur EA; Weiss EA
    ACS Nano; 2011 Mar; 5(3):2026-35. PubMed ID: 21361353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: synthesis, characterization and toxicity evaluation.
    Wang L; Zhang H; Lu C; Zhao L
    J Colloid Interface Sci; 2014 Jan; 413():140-6. PubMed ID: 24183442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Ligand Selection Affects Stoichiometry, Carrier Dynamics, and Trapping in CuInSe
    Harvey SM; Houck DW; Liu W; Liu Y; Gosztola DJ; Korgel BA; Wasielewski MR; Schaller RD
    ACS Nano; 2021 Dec; 15(12):19588-19599. PubMed ID: 34806353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy.
    McArthur EA; Morris-Cohen AJ; Knowles KE; Weiss EA
    J Phys Chem B; 2010 Nov; 114(45):14514-20. PubMed ID: 20507144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced rate of radiative decay in CdSe quantum dots upon adsorption of an exciton-delocalizing ligand.
    Jin S; Harris RD; Lau B; Aruda KO; Amin VA; Weiss EA
    Nano Lett; 2014 Sep; 14(9):5323-8. PubMed ID: 25167466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation Energy Dependence of Photoluminescence Quantum Yields in Semiconductor Nanomaterials with Varying Dimensionalities.
    Sanderson WM; Hoy J; Morrison C; Wang F; Wang Y; Morrison PJ; Buhro WE; Loomis RA
    J Phys Chem Lett; 2020 May; 11(9):3249-3256. PubMed ID: 32255643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry.
    Rodosthenous P; Gómez-Campos FM; Califano M
    J Phys Chem Lett; 2020 Dec; 11(23):10124-10130. PubMed ID: 33191752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for aqueous synthesis of CdTe duantum dots.
    Feng L; Kuang H; Yuan X; Huang H; Yi S; Wang T; Deng K; Tang C; Zeng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():298-302. PubMed ID: 24412782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast electron trapping in ligand-exchanged quantum dot assemblies.
    Turk ME; Vora PM; Fafarman AT; Diroll BT; Murray CB; Kagan CR; Kikkawa JM
    ACS Nano; 2015 Feb; 9(2):1440-7. PubMed ID: 25635923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.
    Wen Q; Kershaw SV; Kalytchuk S; Zhovtiuk O; Reckmeier C; Vasilevskiy MI; Rogach AL
    ACS Nano; 2016 Apr; 10(4):4301-11. PubMed ID: 26958866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the efficiency of semiconducting quantum dot photocatalyzed atom transfer radical polymerization by ligand shell engineering.
    Zhu Y; Jin T; Lian T; Egap E
    J Chem Phys; 2021 May; 154(20):204903. PubMed ID: 34241152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.