BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23544106)

  • 1. The influence of 150-cavity binders on the dynamics of influenza A neuraminidases as revealed by molecular dynamics simulations and combined clustering.
    Greenway KT; LeGresley EB; Pinto BM
    PLoS One; 2013; 8(3):e59873. PubMed ID: 23544106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase.
    Kar P; Knecht V
    J Phys Chem B; 2012 May; 116(21):6137-49. PubMed ID: 22553951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity.
    von Grafenstein S; Wallnoefer HG; Kirchmair J; Fuchs JE; Huber RG; Schmidtke M; Sauerbrei A; Rollinger JM; Liedl KR
    J Biomol Struct Dyn; 2015; 33(1):104-20. PubMed ID: 24279589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.
    Han N; Mu Y
    PLoS One; 2013; 8(4):e60995. PubMed ID: 23593372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of the catalytic site and 150 cavity for design of influenza A neuraminidase inhibitors.
    Adabala PJ; LeGresley EB; Bance N; Niikura M; Pinto BM
    J Org Chem; 2013 Nov; 78(21):10867-77. PubMed ID: 24090215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 340-cavity in neuraminidase provides new opportunities for influenza drug development: A molecular dynamics simulation study.
    Han N; Mu Y; Miao H; Yang Y; Wu Q; Li J; Ding J; Xu B; Huang Z
    Biochem Biophys Res Commun; 2016 Jan; 470(1):130-136. PubMed ID: 26768362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mechanism by which 146-N-Glycan Affects the Active Site of Neuraminidase.
    Liu P; Wang Z; Zhang L; Li D; Lin J
    PLoS One; 2015; 10(8):e0135487. PubMed ID: 26267136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase.
    Birch L; Murray CW; Hartshorn MJ; Tickle IJ; Verdonk ML
    J Comput Aided Mol Des; 2002 Dec; 16(12):855-69. PubMed ID: 12825619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase.
    Rakers C; Schwerdtfeger SM; Mortier J; Duwe S; Wolff T; Wolber G; Melzig MF
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4312-7. PubMed ID: 25096296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitor selectivity of a new class of oseltamivir analogs against viral neuraminidase over human neuraminidase enzymes.
    Albohy A; Mohan S; Zheng RB; Pinto BM; Cairo CW
    Bioorg Med Chem; 2011 May; 19(9):2817-22. PubMed ID: 21489803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Computational Model for Docking of Noncompetitive Neuraminidase Inhibitors and Probing their Binding Interactions with Neuraminidase of Influenza Virus H5N1.
    Chintakrindi AS; Martis EA; Gohil DJ; Kothari ST; Chowdhary AS; Coutinho EC; Kanyalkar MA
    Curr Comput Aided Drug Des; 2016; 12(4):272-281. PubMed ID: 27412704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of the 340-Loop in Influenza Neuraminidase Offers New Insight for Antiviral Drug Development.
    Han N; Ng JTY; Li Y; Mu Y; Huang Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32781779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation.
    Jin Z; Wang Y; Yu XF; Tan QQ; Liang SS; Li T; Zhang H; Shaw PC; Wang J; Hu C
    Comput Biol Chem; 2020 Apr; 85():107241. PubMed ID: 32120300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prediction of selective inhibition of neuraminidase from various influenza virus strains by potential inhibitors].
    Mikurova AV; Rybina AV; Skvortsov VS
    Biomed Khim; 2016 Nov; 62(6):691-703. PubMed ID: 28026814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Creation of a generalized model prediction of inhibition of neuraminidase of influenza virus of various strains].
    Mikurova AV; Skvortsov VS
    Biomed Khim; 2018 Jun; 64(3):247-252. PubMed ID: 29964260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel binding patterns between ganoderic acids and neuraminidase: Insights from docking, molecular dynamics and MM/PBSA studies.
    Yang Z; Wu F; Yuan X; Zhang L; Zhang S
    J Mol Graph Model; 2016 Apr; 65():27-34. PubMed ID: 26905206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The universal epitope of influenza A viral neuraminidase fundamentally contributes to enzyme activity and viral replication.
    Doyle TM; Jaentschke B; Van Domselaar G; Hashem AM; Farnsworth A; Forbes NE; Li C; Wang J; He R; Brown EG; Li X
    J Biol Chem; 2013 Jun; 288(25):18283-9. PubMed ID: 23645684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases.
    Varghese JN; Colman PM; van Donkelaar A; Blick TJ; Sahasrabudhe A; McKimm-Breschkin JL
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11808-12. PubMed ID: 9342319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding properties of the H5N1 influenza virus neuraminidase as inferred from molecular modeling.
    Raab M; Tvaroška I
    J Mol Model; 2011 Jun; 17(6):1445-56. PubMed ID: 20853123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.