BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23544585)

  • 1. Direct fluorination applied to wood flour used as a reinforcement for polymers.
    Saulnier F; Dubois M; Charlet K; Frezet L; Beakou A
    Carbohydr Polym; 2013 Apr; 94(1):642-6. PubMed ID: 23544585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization.
    Kim D; Andou Y; Shirai Y; Nishida H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.
    Suchy M; Virtanen J; Kontturi E; Vuorinen T
    Biomacromolecules; 2010 Feb; 11(2):515-20. PubMed ID: 20025261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites.
    Liu R; Chen Y; Cao J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):161-8. PubMed ID: 26671464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers.
    Schmidt M; Gierlinger N; Schade U; Rogge T; Grunze M
    Biopolymers; 2006 Dec; 83(5):546-55. PubMed ID: 16897765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the effect of wood ultrastructural changes from mechanical treatment on kinetics of monomeric sugars and chemicals production in acid bisulfite treatment.
    Liu Y; Wang J; Wolcott MP
    Bioresour Technol; 2017 Feb; 226():24-30. PubMed ID: 27960125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile strategy for grafting polymers to wood cell walls.
    Keplinger T; Cabane E; Chanana M; Hass P; Merk V; Gierlinger N; Burgert I
    Acta Biomater; 2015 Jan; 11():256-63. PubMed ID: 25242649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions.
    Popescu MC; Totolin M; Tibirna CM; Sdrobis A; Stevanovic T; Vasile C
    Int J Biol Macromol; 2011 Mar; 48(2):326-35. PubMed ID: 21182856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance.
    Santoni I; Callone E; Sandak A; Sandak J; Dirè S
    Carbohydr Polym; 2015 Mar; 117():710-721. PubMed ID: 25498692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of steam treatment on the properties of wood cell walls.
    Yin Y; Berglund L; Salmén L
    Biomacromolecules; 2011 Jan; 12(1):194-202. PubMed ID: 21133402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of moisture content in relation to thermal behaviour and plasticization of Eudragit RLPO.
    Pirayavaraporn C; Rades T; Tucker IG
    Int J Pharm; 2012 Jan; 422(1-2):68-74. PubMed ID: 22036652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous butyrylation and lauroylation of poplar wood in the ionic liquid 1-butyl-3-methylimidazolium chloride.
    Yuan T; Sun S; Xu F; Sun RC
    Bioresour Technol; 2011 Mar; 102(6):4590-3. PubMed ID: 21256003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis in swelling and in sorption of wood tissue.
    Patera A; Derome D; Griffa M; Carmeliet J
    J Struct Biol; 2013 Jun; 182(3):226-34. PubMed ID: 23523731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling.
    Olsén P; Herrera N; Berglund LA
    Biomacromolecules; 2020 Feb; 21(2):597-603. PubMed ID: 31769663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wood plastic composite using graphene nanoplatelets.
    Sheshmani S; Ashori A; Fashapoyeh MA
    Int J Biol Macromol; 2013 Jul; 58():1-6. PubMed ID: 23541554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards.
    Guo J; Tang Y; Xu Z
    J Hazard Mater; 2010 Jul; 179(1-3):203-7. PubMed ID: 20304554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis.
    Popescu CM; Navi P; Placencia Peña MI; Popescu MC
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():405-412. PubMed ID: 29065332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New polymeric composites based on poly(-caprolactone) and layered double hydroxides containing antimicrobial species.
    Costantino U; Bugatti V; Gorrasi G; Montanari F; Nocchetti M; Tammaro L; Vittoria V
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):668-77. PubMed ID: 20355989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.