BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 235450)

  • 21. Thermodynamic resolution of the iron-sulfur centers of the succinic dehydrogenase of Rhodopseudomonas sphaeroides.
    Ingledew WJ; Prince RC
    Arch Biochem Biophys; 1977 Jan; 178(1):303-7. PubMed ID: 300000
    [No Abstract]   [Full Text] [Related]  

  • 22. Spectroscopic investigation of the inhibitory effect of fatty acids on photosynthetic systems.
    Steffen H; Calvin M
    Nat New Biol; 1971 Dec; 234(49):165-8. PubMed ID: 5316369
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of ethanol and acetaldehyde on iron-sulfure centers in the mitochondrial respiratory chain.
    Salerno JC; Ohnishi T
    Arch Biochem Biophys; 1976 Oct; 176(2):757-65. PubMed ID: 185968
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on iron-sulfur proteins in the site I region of the respiratory chain in pigeon heart mitochondria and submitochondrial particles.
    Ohnishi T; Wilson DF; Asakura T; Chance B
    Biochem Biophys Res Commun; 1972 Feb; 46(4):1631-8. PubMed ID: 4335622
    [No Abstract]   [Full Text] [Related]  

  • 25. Response of 9-aminoacridine fluorescence to transmembrane pH-gradients in chromatophores from Rhodopseudomonas sphaeroides.
    Elema RP; Michels PA; Konings WN
    Eur J Biochem; 1978 Dec; 92(2):381-7. PubMed ID: 33044
    [No Abstract]   [Full Text] [Related]  

  • 26. Iron-sulfur proteins of the green photosynthetic bacterium Chlorobium.
    Knaff DB; Malkin R
    Biochim Biophys Acta; 1976 May; 430(2):244-52. PubMed ID: 6060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium.
    Case GD; Parson WW
    Biochim Biophys Acta; 1973 Apr; 292(3):677-84. PubMed ID: 4705448
    [No Abstract]   [Full Text] [Related]  

  • 28. Electron transport phosphorylation.
    Baltscheffsky H; Baltscheffsky M
    Annu Rev Biochem; 1974; 43(0):871-97. PubMed ID: 4368669
    [No Abstract]   [Full Text] [Related]  

  • 29. The oxidation-reduction potentials of the iron-sulfur proteins in mitochondria.
    Wilson DF; Erecinska M; Dutton PL; Tsudzuki T
    Biochem Biophys Res Commun; 1970 Dec; 41(5):1273-8. PubMed ID: 4320717
    [No Abstract]   [Full Text] [Related]  

  • 30. Specific mutagenesis of the rieske iron-sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc(1) complex.
    Guergova-Kuras M; Kuras R; Ugulava N; Hadad I; Crofts AR
    Biochemistry; 2000 Jun; 39(25):7436-44. PubMed ID: 10858292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores.
    Shinkarev VP; Ugulava NB; Crofts AR; Wraight CA
    Biochemistry; 2000 Dec; 39(51):16206-12. PubMed ID: 11123950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of action of the respiratory inhibitor, antimycin.
    Slater EC
    Biochim Biophys Acta; 1973 Dec; 301(2):129-54. PubMed ID: 4358868
    [No Abstract]   [Full Text] [Related]  

  • 33. The influence of transmembrane potentials of the redox equilibrium between cytochrome c2 and the reaction center in Rhodopseudomonas sphaeroides chromatophores.
    Takamiya K; Dutton PL
    FEBS Lett; 1977 Aug; 80(2):279-84. PubMed ID: 196931
    [No Abstract]   [Full Text] [Related]  

  • 34. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata.
    Bowyer JR; Tierney GV; Crofts AR
    FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250
    [No Abstract]   [Full Text] [Related]  

  • 35. The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas sphaeroides.
    Michels PA; Konings WN
    Eur J Biochem; 1978 Apr; 85(1):147-55. PubMed ID: 25184
    [No Abstract]   [Full Text] [Related]  

  • 36. The primary acceptor of bacterial photosynthesis: its operating midpoint potential?
    Prince RC; Dutton PL
    Arch Biochem Biophys; 1976 Feb; 172(2):329-34. PubMed ID: 4013
    [No Abstract]   [Full Text] [Related]  

  • 37. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB; Buchanan BB
    Biochim Biophys Acta; 1975 Mar; 376(3):549-60. PubMed ID: 1125222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron-sulphur proteins and other electron-transport components in chromatophores from the purple bacterium Chromatium.
    Evans MC; Lord AV; Reeves SG
    Biochem J; 1974 Feb; 138(2):177-83. PubMed ID: 4362737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Primary processes in energy transfer of photosynthesis (author's transl)].
    Nishimura M
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):301-17. PubMed ID: 169548
    [No Abstract]   [Full Text] [Related]  

  • 40. Oxidation-reduction potentials of cytochromes in mitochondria.
    Dutton PL; Wilson DF; Lee CP
    Biochemistry; 1970 Dec; 9(26):5077-82. PubMed ID: 4320585
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.