These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23545114)
1. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry. Heinz S; Balle F; Wagner G; Eifler D Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114 [TBL] [Abstract][Full Text] [Related]
2. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Chai G; Zhou N Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182 [TBL] [Abstract][Full Text] [Related]
3. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios. Mayer H; Fitzka M; Schuller R Ultrasonics; 2013 Dec; 53(8):1425-32. PubMed ID: 23548512 [TBL] [Abstract][Full Text] [Related]
4. Crack Initiation Mechanism and Life Prediction of Ti60 Titanium Alloy Considering Stress Ratios Effect in Very High Cycle Fatigue Regime. He R; Peng H; Liu F; Khan MK; Chen Y; He C; Wang C; Wang Q; Liu Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454493 [TBL] [Abstract][Full Text] [Related]
5. Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime. Wickmann C; Benz C; Heyer H; Witte-Bodnar K; Schäfer J; Sander M Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576539 [TBL] [Abstract][Full Text] [Related]
6. Microstructural and Very High Cycle Fatigue (VHCF) Behavior of Ti6Al4V-A Comparative Study. Jebieshia TR; Kim JM; Kang JW; Son SW; Kim HD Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326223 [TBL] [Abstract][Full Text] [Related]
7. On the use of ultrasonic fatigue testing technique--variable amplitude loadings and crack growth monitoring. Müller T; Sander M Ultrasonics; 2013 Dec; 53(8):1417-24. PubMed ID: 23597637 [TBL] [Abstract][Full Text] [Related]
8. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6). Krewerth D; Weidner A; Biermann H Ultrasonics; 2013 Dec; 53(8):1441-9. PubMed ID: 23541962 [TBL] [Abstract][Full Text] [Related]
9. Stress and strain calculation method for orthotropic polymer composites under axial and bending ultrasonic fatigue loads. Premanand A; Balle F Ultrasonics; 2023 Dec; 135():107130. PubMed ID: 37595384 [TBL] [Abstract][Full Text] [Related]
10. Influence of specimen geometry on temperature increase during ultrasonic fatigue testing. Bach J; Höppel HW; Bitzek E; Göken M Ultrasonics; 2013 Dec; 53(8):1412-6. PubMed ID: 23711329 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes. Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816 [TBL] [Abstract][Full Text] [Related]
12. A Novel Ultrasonic Fatigue Test and Application in Bending Fatigue of TC4 Titanium Alloy. Tang S; Wang X; Huang B; Yang D; Li L; He C; Xu B; Liu Y; Wang C; Wang Q Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614344 [TBL] [Abstract][Full Text] [Related]
13. Effect of Low Cycle Fatigue Predamage on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy. Nie B; Zhao Z; Ouyang Y; Chen D; Chen H; Sun H; Liu S Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207556 [TBL] [Abstract][Full Text] [Related]
14. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy. Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842 [TBL] [Abstract][Full Text] [Related]
15. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Pan X; Li X; Zhou L; Feng X; Luo S; He W Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327 [TBL] [Abstract][Full Text] [Related]
16. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors. Deng H; Li W; Sakai T; Sun Z Materials (Basel); 2015 Dec; 8(12):8338-8354. PubMed ID: 28793714 [TBL] [Abstract][Full Text] [Related]
17. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Pan X; Qian G; Wu S; Fu Y; Hong Y Sci Rep; 2020 Mar; 10(1):4742. PubMed ID: 32179764 [TBL] [Abstract][Full Text] [Related]
18. Very High Cycle Fatigue (VHCF) Characteristics of Carbon Fiber Reinforced Plastics (CFRP) under Ultrasonic Loading. Cui W; Chen X; Chen C; Cheng L; Ding J; Zhang H Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32085558 [TBL] [Abstract][Full Text] [Related]
19. A Novel Model of Ultrasonic Fatigue Test in Pure Bending. Yang D; Tang S; Hu Y; Nikitin A; Wang Q; Liu Y; Li L; He C; Li Y; Xu B; Wang C Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888332 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic fatigue testing of concrete. Fitzka M; Karr U; Granzner M; Melichar T; Rödhammer M; Strauss A; Mayer H Ultrasonics; 2021 Sep; 116():106521. PubMed ID: 34273639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]