These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2354524)

  • 41. Effect of multiple administration of calcium antagonists on lipid peroxidation in rat liver microsomes.
    Koleva M; Alov P
    Gen Pharmacol; 1996 Jul; 27(5):891-3. PubMed ID: 8842695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Ca2+ antagonists and antiepileptics on tetrodotoxin-sensitive Ca(2+)-conducting channels in isolated rat hippocampal CA1 neurons.
    Takahashi K; Kameda H; Kataoka M; Ueno S; Akaike N
    Neurosci Lett; 1992 Dec; 148(1-2):60-2. PubMed ID: 1338651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium antagonists stimulate sperm motility in ejaculated human semen.
    Hong CY; Chiang BN; Ku J; Wei YH; Fong JC
    Br J Clin Pharmacol; 1985 Jan; 19(1):45-9. PubMed ID: 3919750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of dotarizine and flunarizine on chromaffin cell viability and cytosolic Ca2+.
    Novalbos J; Abad-Santos F; Zapater P; Cano-Abad MF; Moradiellos J; Sánchez-García P; García AG
    Eur J Pharmacol; 1999 Feb; 366(2-3):309-17. PubMed ID: 10082213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant properties of calcium antagonists related to membrane biophysical interactions.
    Mason RP; Mak IT; Trumbore MW; Mason PE
    Am J Cardiol; 1999 Aug; 84(4A):16L-22L. PubMed ID: 10480441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of negative inotropic potency, reversibility, and effects on calcium influx of six calcium channel antagonists in cultured myocardial cells.
    Barry WH; Horowitz JD; Smith TW
    Br J Pharmacol; 1985 May; 85(1):51-9. PubMed ID: 4027472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Second-generation calcium antagonists: search for greater selectivity and versatility.
    Singh BN; Baky S; Nademanee K
    Am J Cardiol; 1985 Jan; 55(3):214B-221B. PubMed ID: 3155893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of calcium entry blockers in several models of immediate hypersensitivity.
    Ritchie DM; Sierchio JN; Bishop CM; Hedli CC; Levinson SL; Capetola RJ
    J Pharmacol Exp Ther; 1984 Jun; 229(3):690-5. PubMed ID: 6202868
    [TBL] [Abstract][Full Text] [Related]  

  • 49. U-92032, a T-type Ca2+ channel blocker and antioxidant, reduces neuronal ischemic injuries.
    Ito C; Im WB; Takagi H; Takahashi M; Tsuzuki K; Liou SY; Kunihara M
    Eur J Pharmacol; 1994 May; 257(3):203-10. PubMed ID: 8088342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of different Ca2+ entry blockers on dopamine-induced inhibition of in vitro prolactin secretion.
    Di Renzo G; Amoroso S; Maida P; Canzoniero L; Nappi C; Taglialatela M; Annunzia L
    Eur J Pharmacol; 1988 Feb; 146(2-3):201-6. PubMed ID: 3371396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different effects of R 56865 and calcium entry blockers on K+- and noradrenaline-induced contractions and 45Ca uptake in rat aorta.
    Koch P; Wilhelm D; Wermelskirchen D; Nebel U; Wilffert B; Peters T
    Eur J Pharmacol; 1988 Dec; 158(3):183-90. PubMed ID: 3253097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of lidoflazine and flunarizine on cerebral reactive hyperemia.
    Phillis JW; DeLong RE; Towner JK
    Eur J Pharmacol; 1985 Jun; 112(3):323-9. PubMed ID: 4018140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. K(+)-stimulated 45Ca2+ flux into rat neocortical mini-slices is blocked by omega-Aga-IVA and the dual Na+/Ca2+ channel blockers lidoflazine and flunarizine.
    Geer JJ; Dooley DJ; Adams ME
    Neurosci Lett; 1993 Aug; 158(1):97-100. PubMed ID: 8233081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The calcium channel blocker LAS 30538, unlike nifedipine, verapamil, diltiazem or flunarizine, potently inhibits insulin secretion in-vivo in rats and dogs.
    Gristwood RW; Furman BL; Llenas J; Jauregui J; Berga P
    J Pharm Pharmacol; 1992 Oct; 44(10):851-5. PubMed ID: 1360513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading.
    Haigney MC; Lakatta EG; Stern MD; Silverman HS
    Circulation; 1994 Jul; 90(1):391-9. PubMed ID: 8026023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. R56865 and flunarizine as Na(+)-channel blockers in isolated Purkinje neurons of rat cerebellum.
    Kiskin NI; Chizhmakov IV; Tsyndrenko AYa ; Krishtal OA; Tegtmeier F
    Neuroscience; 1993 Jun; 54(3):575-85. PubMed ID: 8392666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nature of the cardiomyocyte injury induced by lipid hydroperoxides.
    Thollon C; Iliou JP; Cambarrat C; Robin F; Vilaine JP
    Cardiovasc Res; 1995 Nov; 30(5):648-55. PubMed ID: 8595608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium channel antagonists and human immunodeficiency virus coat protein-mediated neuronal injury.
    Lipton SA
    Ann Neurol; 1991 Jul; 30(1):110-4. PubMed ID: 1656845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of the calcium entry and calcium overload blocking properties of R71811 and flunarizine.
    Matsui Y; Yamagami I; Hirai K
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Sep; 342(3):264-70. PubMed ID: 2126346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Histamine stimulated synaptosomal Ca2+ uptake through activation of calcium channels.
    Rodriguez R; Toledo A; Brandner R; Sabrià J; Rodriguez J; Blanco I
    Biochem Biophys Res Commun; 1988 Jun; 153(3):1136-43. PubMed ID: 2455514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.