BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 23545580)

  • 1. Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating.
    Lokteva I; Thiemann S; Gannott F; Zaumseil J
    Nanoscale; 2013 May; 5(10):4230-5. PubMed ID: 23545580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility enhancement of SnO2 nanowire transistors gated with a nanogranular SiO2 solid electrolyte.
    Sun J; Huang W; Qian C; Yang J; Gao Y
    Phys Chem Chem Phys; 2014 Jan; 16(3):1084-8. PubMed ID: 24288005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
    Kim DK; Lai Y; Vemulkar TR; Kagan CR
    ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors.
    Oh SJ; Kim DK; Kagan CR
    ACS Nano; 2012 May; 6(5):4328-34. PubMed ID: 22512336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities.
    Pradhan NR; Rhodes D; Xin Y; Memaran S; Bhaskaran L; Siddiq M; Hill S; Ajayan PM; Balicas L
    ACS Nano; 2014 Aug; 8(8):7923-9. PubMed ID: 25007391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron and hole mobilities in single-layer WSe2.
    Allain A; Kis A
    ACS Nano; 2014 Jul; 8(7):7180-5. PubMed ID: 24949529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors.
    Kang MS; Lee J; Norris DJ; Frisbie CD
    Nano Lett; 2009 Nov; 9(11):3848-52. PubMed ID: 19775167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate Bias Stress Instability and Hysteresis Characteristics of InAs Nanowire Field-Effect Transistors.
    Lan C; Yip S; Kang X; Meng Y; Bu X; Ho JC
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56330-56337. PubMed ID: 33287538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambipolar phosphorene field effect transistor.
    Das S; Demarteau M; Roelofs A
    ACS Nano; 2014 Nov; 8(11):11730-8. PubMed ID: 25329532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-double-layer field-effect transistors with ionic liquids.
    Fujimoto T; Awaga K
    Phys Chem Chem Phys; 2013 Jun; 15(23):8983-9006. PubMed ID: 23665738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs.
    Lu MP; Vire E; Montès L
    Nanotechnology; 2015 Dec; 26(49):495501. PubMed ID: 26574477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic-Liquid Gating in Two-Dimensional TMDs: The Operation Principles and Spectroscopic Capabilities.
    Vaquero D; Clericò V; Salvador-Sánchez J; Quereda J; Diez E; Pérez-Muñoz AM
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis(tetramethylguanidino)ben-zene.
    Schneider S; Brohmann M; Lorenz R; Hofstetter YJ; Rother M; Sauter E; Zharnikov M; Vaynzof Y; Himmel HJ; Zaumseil J
    ACS Nano; 2018 Jun; 12(6):5895-5902. PubMed ID: 29787248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits.
    Baeg KJ; Khim D; Kim J; Han H; Jung SW; Kim TW; Kang M; Facchetti A; Hong SK; Kim DY; Noh YY
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6176-84. PubMed ID: 23046095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.
    Luo H; Liang L; Cao H; Dai M; Lu Y; Wang M
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17023-31. PubMed ID: 26189702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors.
    Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL
    ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.