BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23545782)

  • 1. Recovering degraded quasi-solid-state dye-sensitized solar cells by applying electrical pulses.
    Zhang X; Huang X; Jiang H
    Phys Chem Chem Phys; 2013 May; 15(18):6864-9. PubMed ID: 23545782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photovoltaic and thermal properties of electrolytes based on electrospun poly(vinylidene fluoride-hexafluoro propylene)/poly(methyl methacrylate) nanofibers for dye-sensitized solar cells.
    Jang YW; Won DH; Kim YK; Hwang WP; Jang SI; Jeong SH; Kim MR; Lee JK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6238-42. PubMed ID: 25936095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Dye-sensitized Solar Cells Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Montmorillonite Nanofiller-based Composite Electrolytes.
    Chen LH; Venkatesan S; Liu IP; Lee YL
    J Oleo Sci; 2020 Jun; 69(6):539-547. PubMed ID: 32404546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol.
    Yang Y; Zhou CH; Xu S; Zhang J; Wu SJ; Hu H; Chen BL; Tai QD; Sun ZH; Liu W; Zhao XZ
    Nanotechnology; 2009 Mar; 20(10):105204. PubMed ID: 19417514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Quasi-Solid-State Electrolytes based on Electrospun Poly(vinylidene fluoride) Fiber Membranes for Highly Efficient and Stable Dye-Sensitized Solar Cells.
    Cheng F; Ou Y; Liu G; Zhao L; Dong B; Wang S; Wen S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31121912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.
    Zhang X; Huang X; Li C; Jiang H
    Adv Mater; 2013 Aug; 25(30):4093-6. PubMed ID: 23740719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of Dye-Sensitized Solar Cell Assembled from Modified Chitosan-Based Gel Polymer Electrolytes Incorporated with Potassium Iodide.
    Zulkifli AM; Said NIAM; Bakr Aziz S; Dannoun EMA; Hisham S; Shah S; Abu Bakar A; Zainal ZH; Tajuddin HA; Mohammed Hadi J; Brza MA; Raza Saeed S; Amin PO
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32916841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel thiazolo[5,4-d]thiazole-based organic dyes for quasi-solid-state dye-sensitized solar cells.
    Zhang W; Feng Q; Wang ZS; Zhou G
    Chem Asian J; 2013 May; 8(5):939-46. PubMed ID: 23420544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.
    Park JT; Ahn SH; Roh DK; Lee CS; Kim JH
    ChemSusChem; 2014 Jul; 7(7):2037-47. PubMed ID: 24678065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.
    Sobuś J; Ziółek M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14116-26. PubMed ID: 24901747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrications of electrospun nanofibers containing inorganic fillers for dye-sensitized solar cells.
    Kim YK; Hwang WP; Seo MH; Lee JK; Kim MR
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6231-4. PubMed ID: 25936093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells.
    Chi WS; Roh DK; Kim SJ; Heo SY; Kim JH
    Nanoscale; 2013 Jun; 5(12):5341-8. PubMed ID: 23591967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
    Suyitno S; Saputra TJ; Supriyanto A; Arifin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():99-104. PubMed ID: 25875031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving pore filling of gel electrolyte and charge transport in photoanode for high-efficiency quasi-solid-state dye-sensitized solar cells.
    Wang B; Chang S; Lee LT; Zheng S; Wong KY; Li Q; Xiao X; Chen T
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8289-93. PubMed ID: 23978250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO₂ nanocomposite layer.
    Shan GB; Demopoulos GP
    Adv Mater; 2010 Oct; 22(39):4373-7. PubMed ID: 20809511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes.
    Yamanaka N; Kawano R; Kubo W; Masaki N; Kitamura T; Wada Y; Watanabe M; Yanagida S
    J Phys Chem B; 2007 May; 111(18):4763-9. PubMed ID: 17474701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of electrospun titania nanofibers in dye-sensitized solar cells.
    Krysova H; Zukal A; Trckova-Barakova J; Chandiran AK; Nazeeruddin MK; Grätzel M; Kavan L
    Chimia (Aarau); 2013; 67(3):149-54. PubMed ID: 23574954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.
    Roh DK; Chi WS; Ahn SH; Jeon H; Kim JH
    ChemSusChem; 2013 Aug; 6(8):1384-91. PubMed ID: 23893968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.