These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23545849)

  • 1. Chemical welding of binary nanoparticles: room temperature sintering of CuSe and In2S3 nanoparticles for solution-processed CuInS(x)Se(1-x) solar cells.
    Min Lim H; Batabyal SK; Pramana SS; Wong LH; Magdassi S; Mhaisalkar SG
    Chem Commun (Camb); 2013 Jun; 49(47):5351-3. PubMed ID: 23545849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactive nanocrystals by low-temperature welding of copper sulfide nanoparticles and indium sulfide nanosheets.
    Lim HM; Tan JY; Batabyal SK; Magdassi S; Mhaisalkar SG; Wong LH
    ChemSusChem; 2014 Dec; 7(12):3290-4. PubMed ID: 25146714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggering the sintering of silver nanoparticles at room temperature.
    Magdassi S; Grouchko M; Berezin O; Kamyshny A
    ACS Nano; 2010 Apr; 4(4):1943-8. PubMed ID: 20373743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of CIS nanoparticle ink for low-cost thin film solar cells.
    Shim J; Hahn JS; Lee SH; Lee J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9279-84. PubMed ID: 25971051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles.
    Cao Y; Denny MS; Caspar JV; Farneth WE; Guo Q; Ionkin AS; Johnson LK; Lu M; Malajovich I; Radu D; Rosenfeld HD; Choudhury KR; Wu W
    J Am Chem Soc; 2012 Sep; 134(38):15644-7. PubMed ID: 22963012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.
    Yoon SS; Khang DY
    Nano Lett; 2016 Jun; 16(6):3550-6. PubMed ID: 27159354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on thermal evolution of the CuSe phase in nanoparticle-based absorber layers for solution-processed chalcopyrite photovoltaic devices.
    Seo YH; Lee BS; Jo Y; Kim HG; Woo K; Moon J; Choi Y; Ryu BH; Jeong S
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6930-6. PubMed ID: 23790015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property.
    Li Z; Tao X; Wu Z; Zhang P; Zhang Z
    Ultrason Sonochem; 2009 Feb; 16(2):221-4. PubMed ID: 18762441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme.
    Biesheuvel PM; Lindhoud S; de Vries R; Cohen Stuart MA
    Langmuir; 2006 Jan; 22(3):1291-300. PubMed ID: 16430296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency.
    Cai Y; Ho JC; Batabyal SK; Liu W; Sun Y; Mhaisalkar SG; Wong LH
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1533-7. PubMed ID: 23428066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties.
    Li Q; Zhai L; Zou C; Huang X; Zhang L; Yang Y; Chen X; Huang S
    Nanoscale; 2013 Feb; 5(4):1638-48. PubMed ID: 23334175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and shape control of CuInS(2) nanoparticles.
    Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J
    J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling electrostatic co-assembly using ion-containing copolymers: from surfactants to nanoparticles.
    Berret JF
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):38-48. PubMed ID: 21376298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application.
    Xu J; Luan CY; Tang YB; Chen X; Zapien JA; Zhang WJ; Kwong HL; Meng XM; Lee ST; Lee CS
    ACS Nano; 2010 Oct; 4(10):6064-70. PubMed ID: 20925392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges.
    Absalan G; Ghaemi M
    Amino Acids; 2012 Nov; 43(5):1955-67. PubMed ID: 22491826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y).
    Shavel A; Arbiol J; Cabot A
    J Am Chem Soc; 2010 Apr; 132(13):4514-5. PubMed ID: 20232869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature.
    Liu D; Qu W; Chen W; Zhang W; Wang Z; Jiang X
    Anal Chem; 2010 Dec; 82(23):9606-10. PubMed ID: 21069969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.