These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 23546115)

  • 41. Dual-axis illumination for virtually augmenting the detection view of optical-resolution photoacoustic microscopy.
    Hsu HC; Li L; Yao J; Wong TTW; Shi J; Chen R; Zhou Q; Wang L
    J Biomed Opt; 2018 Jul; 23(7):1-7. PubMed ID: 29981225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reflection-mode multifocal optical-resolution photoacoustic microscopy.
    Li G; Maslov KI; Wang LV
    J Biomed Opt; 2013 Mar; 18(3):030501. PubMed ID: 23446704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiscale photoacoustic microscopy with continuously tunable resolution.
    Jiang B; Yang X; Liu Y; Deng Y; Luo Q
    Opt Lett; 2014 Jul; 39(13):3939-41. PubMed ID: 24978776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner.
    Kim JY; Lee C; Park K; Lim G; Kim C
    Sci Rep; 2015 Jan; 5():7932. PubMed ID: 25604654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging.
    Shao P; Shi W; Hajireza P; Zemp RJ
    J Biomed Opt; 2012 Jul; 17(7):076024. PubMed ID: 22894507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical imaging with phase-coded aperture.
    Chi W; George N
    Opt Express; 2011 Feb; 19(5):4294-300. PubMed ID: 21369259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.
    Choi M; Lee S; Chang JH; Lee E; Jung KD; Kim W
    Opt Express; 2013 Jan; 21(2):1567-73. PubMed ID: 23389140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isotropic-resolution photoacoustic microscopy with multi-angle illumination.
    Wang T; Sun N; Chen R; Zhou Q; Hu S
    Opt Lett; 2019 Jan; 44(1):1-4. PubMed ID: 30645542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy.
    Xia J; Li G; Wang L; Nasiriavanaki M; Maslov K; Engelbach JA; Garbow JR; Wang LV
    Opt Lett; 2013 Dec; 38(24):5236-9. PubMed ID: 24322226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Super Wide-Field Photoacoustic Microscopy of Animals and Humans In Vivo.
    Baik JW; Kim JY; Cho S; Choi S; Kim J; Kim C
    IEEE Trans Med Imaging; 2020 Apr; 39(4):975-984. PubMed ID: 31484110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging.
    Staley J; Hondebrink E; Peterson W; Steenbergen W
    Opt Express; 2013 Dec; 21(25):30553-62. PubMed ID: 24514632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy.
    Park J; Jeon S; Meng J; Song L; Lee JS; Kim C
    J Biomed Opt; 2016 Mar; 21(3):36010. PubMed ID: 27020602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy.
    Shi W; Shao P; Hajireza P; Forbrich A; Zemp RJ
    J Biomed Opt; 2013 Feb; 18(2):26001. PubMed ID: 23377002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compressed sensing based virtual-detector photoacoustic microscopy in vivo.
    Meng J; Liu C; Zheng J; Lin R; Song L
    J Biomed Opt; 2014 Mar; 19(3):36003. PubMed ID: 24599085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy.
    Bondu M; Brooks C; Jakobsen C; Oakes K; Moselund PM; Leick L; Bang O; Podoleanu A
    J Biomed Opt; 2016 Jun; 21(6):61005. PubMed ID: 26836298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Label-free in vivo fiber-based optical-resolution photoacoustic microscopy.
    Hajireza P; Shi W; Zemp RJ
    Opt Lett; 2011 Oct; 36(20):4107-9. PubMed ID: 22002401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration.
    Hajireza P; Forbrich A; Zemp RJ
    Opt Lett; 2013 Aug; 38(15):2711-3. PubMed ID: 23903119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy.
    Kim JY; Lee C; Park K; Lim G; Kim C
    Sensors (Basel); 2015 Apr; 15(5):9815-26. PubMed ID: 25923931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy.
    Hu S; Yan P; Maslov K; Lee JM; Wang LV
    Opt Lett; 2009 Dec; 34(24):3899-901. PubMed ID: 20016651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.