These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2354634)

  • 1. Fracture behaviour of cartilage-on-bone in response to repeated impact loading.
    Silyn-Roberts H; Broom ND
    Connect Tissue Res; 1990; 24(2):143-56. PubMed ID: 2354634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic fracture characteristics of the osteochondral junction undergoing shear deformation.
    Broom ND; Oloyede A; Flachsmann R; Hows M
    Med Eng Phys; 1996 Jul; 18(5):396-404. PubMed ID: 8818138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact induced failure of cartilage-on-bone following creep loading: a microstructural and fracture mechanics study.
    Thambyah A; Zhang G; Kim W; Broom ND
    J Mech Behav Biomed Mater; 2012 Oct; 14():239-47. PubMed ID: 22784816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of impact load on articular cartilage: development of an intra-articular fracture model.
    Borrelli J; Torzilli PA; Grigiene R; Helfet DL
    J Orthop Trauma; 1997 Jul; 11(5):319-26. PubMed ID: 9294794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pathology of acute chondro-osseous injury in the child.
    Ogden JA; Ganey T; Light TR; Southwick WO
    Yale J Biol Med; 1993; 66(3):219-33. PubMed ID: 8209558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A qualitative analysis of crack propagation in articular cartilage at varying rates of tensile loading.
    Stok K; Oloyede A
    Connect Tissue Res; 2003; 44(2):109-20. PubMed ID: 12745678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dramatic influence of loading velocity on the compressive response of articular cartilage.
    Oloyede A; Flachsmann R; Broom ND
    Connect Tissue Res; 1992; 27(4):211-24. PubMed ID: 1576822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why is the adolescent joint particularly susceptible to osteochondral shear fracture?
    Flachsmann R; Broom ND; Hardy AE; Moltschaniwskyj G
    Clin Orthop Relat Res; 2000 Dec; (381):212-21. PubMed ID: 11127658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of specimen thickness on fracture toughness of bovine patellar cartilage.
    Adams DJ; Brosche KM; Lewis JL
    J Biomech Eng; 2003 Dec; 125(6):927-9. PubMed ID: 14986422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of subchondral bone in the initiation and progression of cartilage damage.
    Radin EL; Rose RM
    Clin Orthop Relat Res; 1986 Dec; (213):34-40. PubMed ID: 3780104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge.
    Gao J; Dennis JE; Solchaga LA; Goldberg VM; Caplan AI
    Tissue Eng; 2002 Oct; 8(5):827-37. PubMed ID: 12459061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of roughness on biophysical stimuli at the bone-cartilage interface.
    Beilin V; Ito K; Pande GN
    J Biomech; 2003 Sep; 36(9):1381-5. PubMed ID: 12893047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity of articular cartilage: Analysing the effect of induced stress and the restraint of bone in a dynamic environment.
    Lawless BM; Sadeghi H; Temple DK; Dhaliwal H; Espino DM; Hukins DWL
    J Mech Behav Biomed Mater; 2017 Nov; 75():293-301. PubMed ID: 28763685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On how degeneration influences load-bearing in the cartilage-bone system: a microstructural and micromechanical study.
    Thambyah A; Broom N
    Osteoarthritis Cartilage; 2007 Dec; 15(12):1410-23. PubMed ID: 17689989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness and energy dissipation across the superficial and deeper third metacarpal subchondral bone in Thoroughbred racehorses under high-rate compression.
    Malekipour F; Whitton CR; Lee PV
    J Mech Behav Biomed Mater; 2018 Sep; 85():51-56. PubMed ID: 29852352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient stiffening of cartilage during joint articulation: A microindentation study.
    Yuh C; Laurent MP; Espinosa-Marzal RM; Chubinskaya S; Wimmer MA
    J Mech Behav Biomed Mater; 2021 Jan; 113():104113. PubMed ID: 33032010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subchondral bone failure in an equine model of overload arthrosis.
    Norrdin RW; Kawcak CE; Capwell BA; McIlwraith CW
    Bone; 1998 Feb; 22(2):133-9. PubMed ID: 9477236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint.
    Kempson GE
    Biochim Biophys Acta; 1991 Oct; 1075(3):223-30. PubMed ID: 1954224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musculoskeletal trauma in children.
    Jaramillo D; Shapiro F
    Magn Reson Imaging Clin N Am; 1998 Aug; 6(3):521-36. PubMed ID: 9654583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.