These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23546439)

  • 1. Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol.
    Li XZ; Wu KL; Ye Y; Wei XW
    Nanoscale; 2013 May; 5(9):3648-53. PubMed ID: 23546439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-(Dimethylamino)pyridine as a powerful auxiliary reagent in the electroless synthesis of gold nanotubes.
    Muench F; Kunz U; Neetzel C; Lauterbach S; Kleebe HJ; Ensinger W
    Langmuir; 2011 Jan; 27(1):430-5. PubMed ID: 21133368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of L-Serine.
    Dai W; Li H; Li M; Li C; Wu X; Yang B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22858-67. PubMed ID: 26421883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol.
    Zhou L; Wen M; Wu Q; Wu D
    Dalton Trans; 2014 Jun; 43(21):7924-9. PubMed ID: 24714959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen.
    Tang X; Li L; Shen B; Wang C
    Chemosphere; 2013 May; 91(9):1368-73. PubMed ID: 23490180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.
    Li X; Yang Y; Zhou G; Han S; Wang W; Zhang L; Chen W; Zou C; Huang S
    Nanoscale; 2013 Jun; 5(11):4976-85. PubMed ID: 23636467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High efficiency degradation of 4-nitrophenol by microwave-enhanced catalytic method.
    Lai TL; Yong KF; Yu JW; Chen JH; Shu YY; Wang CB
    J Hazard Mater; 2011 Jan; 185(1):366-72. PubMed ID: 20940080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates.
    Yu Y; Addai-Mensah J; Losic D
    Langmuir; 2010 Sep; 26(17):14068-72. PubMed ID: 20666460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent catalytic properties of Au nanoparticles supported on hierarchical nickel silicate nanostructures.
    Jin R; Sun S; Yang Y; Xing Y; Yu D; Yu X; Song S
    Dalton Trans; 2013 Jun; 42(22):7888-93. PubMed ID: 23235504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncrystalline metal-boron nanotubes: synthesis, characterization, and catalytic-hydrogenation properties.
    Zhu Y; Liu F; Ding W; Guo X; Chen Y
    Angew Chem Int Ed Engl; 2006 Nov; 45(43):7211-4. PubMed ID: 17029320
    [No Abstract]   [Full Text] [Related]  

  • 13. In situ growth of Ni(x)Co(100-x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties.
    Bai S; Shen X; Zhu G; Li M; Xi H; Chen K
    ACS Appl Mater Interfaces; 2012 May; 4(5):2378-86. PubMed ID: 22486337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron-mediated nanotube morphologies.
    Nicholls RJ; Aslam Z; Sarahan MC; Koós A; Yates JR; Nellist PD; Grobert N
    ACS Nano; 2012 Sep; 6(9):7800-5. PubMed ID: 22880934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties.
    Pang H; Lu Q; Li Y; Gao F
    Chem Commun (Camb); 2009 Dec; (48):7542-4. PubMed ID: 20024273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO₄) Nanoparticles.
    Oudghiri-Hassani H; Al Wadaani F
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29382153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superparamagnetic and ferromagnetic Ni nanorod arrays fabricated on Si substrates using electroless deposition.
    Liu CM; Tseng YC; Chen C; Hsu MC; Chao TY; Cheng YT
    Nanotechnology; 2009 Oct; 20(41):415703. PubMed ID: 19762942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passivation oxide controlled selective carbon nanotube growth on metal substrates.
    Bult JB; Sawyer WG; Ajayan PM; Schadler LS
    Nanotechnology; 2009 Feb; 20(8):085302. PubMed ID: 19417446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.
    Jiang Y; Zhu X; Li H; Ni J
    Chemosphere; 2010 Feb; 78(9):1093-9. PubMed ID: 20060999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive analysis of the CVD growth of boron nitride nanotubes.
    Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D
    Nanotechnology; 2012 Jun; 23(21):215601. PubMed ID: 22551670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.