These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Recent advances in single-molecule detection on micro- and nano-fluidic devices. Liu C; Qu Y; Luo Y; Fang N Electrophoresis; 2011 Nov; 32(23):3308-18. PubMed ID: 22134976 [TBL] [Abstract][Full Text] [Related]
6. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190 [TBL] [Abstract][Full Text] [Related]
8. High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. Hess D; Rane A; deMello AJ; Stavrakis S Anal Chem; 2015; 87(9):4965-72. PubMed ID: 25849725 [TBL] [Abstract][Full Text] [Related]
9. Nanofluidic channels fabrication and manipulation of DNA molecules. Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321 [TBL] [Abstract][Full Text] [Related]
10. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603 [TBL] [Abstract][Full Text] [Related]
11. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Sjostrom SL; Joensson HN; Svahn HA Lab Chip; 2013 May; 13(9):1754-61. PubMed ID: 23478908 [TBL] [Abstract][Full Text] [Related]
12. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence analysis of single mitochondria with nanofluidic channels. Pham T; Zand K; Wallace D; Burke P Methods Mol Biol; 2015; 1264():35-46. PubMed ID: 25631001 [TBL] [Abstract][Full Text] [Related]
14. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620 [TBL] [Abstract][Full Text] [Related]
15. Coalescence-assisted generation of single nanoliter droplets with predefined composition. Shemesh J; Nir A; Bransky A; Levenberg S Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction. Zhang Q; Zeng S; Qin J; Lin B Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356 [TBL] [Abstract][Full Text] [Related]
17. Enzyme Kinetics in Femtoliter Arrays. Mogalisetti P; Walt DR Methods Enzymol; 2016; 581():541-560. PubMed ID: 27793293 [TBL] [Abstract][Full Text] [Related]
18. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. He M; Edgar JS; Jeffries GD; Lorenz RM; Shelby JP; Chiu DT Anal Chem; 2005 Mar; 77(6):1539-44. PubMed ID: 15762555 [TBL] [Abstract][Full Text] [Related]
19. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Wang YC; Stevens AL; Han J Anal Chem; 2005 Jul; 77(14):4293-9. PubMed ID: 16013838 [TBL] [Abstract][Full Text] [Related]