These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 23546598)

  • 1. Controlled growth of Ni nanocrystals on SrTiO(3) and their application in the catalytic synthesis of carbon nanotubes.
    Sun J; Wu C; Silly F; Koós AA; Dillon F; Grobert N; Castell MR
    Chem Commun (Camb); 2013 May; 49(36):3748-50. PubMed ID: 23546598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and self-assembled ring structures of Ni nanocrystals.
    Cheng G; Puntes VF; Guo T
    J Colloid Interface Sci; 2006 Jan; 293(2):430-6. PubMed ID: 16026794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted synthesis of pt nanocrystals and deposition on carbon nanotubes in ionic liquids.
    Liu Z; Sun Z; Han B; Zhang J; Huang J; Du J; Miao S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):175-9. PubMed ID: 16573091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions.
    Zhang LY; Guo CX; Cui Z; Guo J; Dong Z; Li CM
    Chemistry; 2012 Dec; 18(49):15693-8. PubMed ID: 23060239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes.
    Omachi H; Segawa Y; Itami K
    Acc Chem Res; 2012 Aug; 45(8):1378-89. PubMed ID: 22587963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube memory by the self-assembly of silicon nanocrystals as charge storage nodes.
    Olmedo M; Wang C; Ryu K; Zhou H; Ren J; Zhan N; Zhou C; Liu J
    ACS Nano; 2011 Oct; 5(10):7972-7. PubMed ID: 21902187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames.
    Pan C; Liu Y; Cao F; Wang J; Ren Y
    Micron; 2004; 35(6):461-8. PubMed ID: 15120131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition.
    Wang H; Ren ZF
    Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-selective synthesis of in situ Ni-filled multi-walled carbon nanotubes using Ni(salen) as a catalyst source.
    Sengupta J; Jana A; Singh ND; Mitra C; Jacob C
    Nanotechnology; 2010 Oct; 21(41):415605. PubMed ID: 20852357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal-carbon nanotube hybrid structures.
    Liu M; Lu G; Chen J
    Nanotechnology; 2008 Jul; 19(26):265705. PubMed ID: 21828693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes.
    Lu J; Yi SS; Kopley T; Qian C; Liu J; Gulari E
    J Phys Chem B; 2006 Apr; 110(13):6655-60. PubMed ID: 16570969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line solid phase extraction of Ni and Pb using carbon nanotubes and modified carbon nanotubes coupled to ETAAS.
    Savio M; Parodi B; Martinez LD; Smichowski P; Gil RA
    Talanta; 2011 Jul; 85(1):245-51. PubMed ID: 21645695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.
    Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons.
    Nath DC; Sahajwalla V
    J Hazard Mater; 2011 Aug; 192(2):691-7. PubMed ID: 21683524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.