These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23547015)

  • 1. Synthesis and labeling of RNA in vitro.
    Huang C; Yu YT
    Curr Protoc Mol Biol; 2013 Apr; Chapter 4():Unit4.15. PubMed ID: 23547015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation.
    Lapham J; Crothers DM
    RNA; 1996 Mar; 2(3):289-96. PubMed ID: 8608452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Photolithographic Synthesis of Chimeric DNA/RNA Hairpin Microarrays To Explore Sequence Specificity Landscapes of RNase HII Cleavage.
    Lietard J; Damha MJ; Somoza MM
    Biochemistry; 2019 Nov; 58(44):4389-4397. PubMed ID: 31631649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific labeling of RNA.
    Nilsen TW
    Cold Spring Harb Protoc; 2013 Mar; 2013(3):. PubMed ID: 23457342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The position of site-directed cleavage of RNA using RNase H and 2'-O-methyl oligonucleotides is dependent on the enzyme source.
    Lapham J; Yu YT; Shu MD; Steitz JA; Crothers DM
    RNA; 1997 Sep; 3(9):950-1. PubMed ID: 9292493
    [No Abstract]   [Full Text] [Related]  

  • 6. A new strategy for introducing photoactivatable 4-thiouridine ((4S)U) into specific positions in a long RNA molecule.
    Yu YT; Steitz JA
    RNA; 1997 Jul; 3(7):807-10. PubMed ID: 9214662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription.
    Champoux JJ; Schultz SJ
    FEBS J; 2009 Mar; 276(6):1506-16. PubMed ID: 19228195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo.
    Julias JG; McWilliams MJ; Sarafianos SG; Arnold E; Hughes SH
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9515-20. PubMed ID: 12093908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription.
    Eggert F; Kulikov K; Domnick C; Leifels P; Kath-Schorr S
    Methods; 2017 May; 120():17-27. PubMed ID: 28454775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate requirements for secondary cleavage by HIV-1 reverse transcriptase RNase H.
    Wisniewski M; Chen Y; Balakrishnan M; Palaniappan C; Roques BP; Fay PJ; Bambara RA
    J Biol Chem; 2002 Aug; 277(32):28400-10. PubMed ID: 12023278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV-1 reverse transcriptase-associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA.
    Götte M; Fackler S; Hermann T; Perola E; Cellai L; Gross HJ; Le Grice SF; Heumann H
    EMBO J; 1995 Feb; 14(4):833-41. PubMed ID: 7533725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemo-enzymatic synthesis of selectively ¹³C/¹⁵N-labeled RNA for NMR structural and dynamics studies.
    Alvarado LJ; Longhini AP; LeBlanc RM; Chen B; Kreutz C; Dayie TK
    Methods Enzymol; 2014; 549():133-62. PubMed ID: 25432748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H.
    Shen LX; Kandimalla ER; Agrawal S
    Bioorg Med Chem; 1998 Oct; 6(10):1695-705. PubMed ID: 9839001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro transcription of labeled RNA: synthesis, capping, and substitution.
    Nilsen TW; Rio DC
    Cold Spring Harb Protoc; 2012 Nov; 2012(11):1181-6. PubMed ID: 23118360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA.
    Liu Y; Holmstrom E; Yu P; Tan K; Zuo X; Nesbitt DJ; Sousa R; Stagno JR; Wang YX
    Nat Protoc; 2018 May; 13(5):987-1005. PubMed ID: 29651055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific cleavage of RNA using chimeric DNA splints and RNase H.
    Inoue H; Hayase Y; Iwai S; Ohtsuka E
    Nucleic Acids Symp Ser; 1988; (19):135-8. PubMed ID: 2465538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific chemical labeling of long RNA molecules.
    Jahn K; Olsen EM; Nielsen MM; Tørring T; MohammadZadegan R; Andersen ES; Gothelf KV; Kjems J
    Bioconjug Chem; 2011 Jan; 22(1):95-100. PubMed ID: 21138255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase.
    DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1993 Sep; 21(18):4330-8. PubMed ID: 7692401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective RNase H cleavage of target RNAs from a tRNA scaffold.
    Ponchon L; Beauvais G; Nonin-Lecomte S; Dardel F
    Methods Mol Biol; 2012; 941():9-18. PubMed ID: 23065550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.