These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23547734)

  • 1. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures.
    Ye X; Gao Y; Chen J; Reifsnyder DC; Zheng C; Murray CB
    Nano Lett; 2013 May; 13(5):2163-71. PubMed ID: 23547734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overgrowth of gold nanorods by using a binary surfactant mixture.
    Khlebtsov BN; Khanadeev VA; Ye J; Sukhorukov GB; Khlebtsov NG
    Langmuir; 2014 Feb; 30(6):1696-703. PubMed ID: 24460392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods.
    Ye X; Zheng C; Chen J; Gao Y; Murray CB
    Nano Lett; 2013 Feb; 13(2):765-71. PubMed ID: 23286198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation effect on the synthesis of high-aspect-ratio gold nanorods.
    Takenaka Y; Kitahata H; Yamada NL; Seto H; Hara M
    J Nanosci Nanotechnol; 2012 Jan; 12(1):714-8. PubMed ID: 22524045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodide in CTAB prevents gold nanorod formation.
    Smith DK; Miller NR; Korgel BA
    Langmuir; 2009 Aug; 25(16):9518-24. PubMed ID: 19413325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of less toxic gold nanorods by using dodecylethyldimethylammonium bromide as an alternative growth-directing surfactant.
    Allen JM; Xu J; Blahove M; Canonico-May SA; Santaloci TJ; Braselton ME; Stone JW
    J Colloid Interface Sci; 2017 Nov; 505():1172-1176. PubMed ID: 28715861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of gold nanorods passivated with amphiphilic ligands.
    Kah JC; Zubieta A; Saavedra RA; Hamad-Schifferli K
    Langmuir; 2012 Jun; 28(24):8834-44. PubMed ID: 22360489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives.
    Ye X; Jin L; Caglayan H; Chen J; Xing G; Zheng C; Doan-Nguyen V; Kang Y; Engheta N; Kagan CR; Murray CB
    ACS Nano; 2012 Mar; 6(3):2804-17. PubMed ID: 22376005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media.
    Tebbe M; Kuttner C; Männel M; Fery A; Chanana M
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5984-91. PubMed ID: 25706195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation.
    Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ
    Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High conversion of HAuCl4 into gold nanorods: A re-seeding approach.
    Canonico-May SA; Beavers KR; Melvin MJ; Alkilany AM; Duvall CL; Stone JW
    J Colloid Interface Sci; 2016 Feb; 463():229-32. PubMed ID: 26550780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable loading of single-stranded DNA on gold nanorods through the displacement of polyvinylpyrrolidone.
    Pekcevik IC; Poon LC; Wang MC; Gates BD
    Anal Chem; 2013 Oct; 85(20):9960-7. PubMed ID: 24016255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.
    Su G; Yang C; Zhu JJ
    Langmuir; 2015 Jan; 31(2):817-23. PubMed ID: 25521416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stabilization and targeting of surfactant-synthesized gold nanorods.
    Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH
    Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.
    Liu M; Guyot-Sionnest P
    J Phys Chem B; 2005 Dec; 109(47):22192-200. PubMed ID: 16853888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide-Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona.
    Barbero F; Moriones OH; Bastús NG; Puntes V
    Bioconjug Chem; 2019 Nov; 30(11):2917-2930. PubMed ID: 31621309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.
    Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV
    Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.