BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 23547930)

  • 1. ENaC inhibitors and airway re-hydration in cystic fibrosis: state of the art.
    Althaus M
    Curr Mol Pharmacol; 2013 Mar; 6(1):3-12. PubMed ID: 23547930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease.
    Moore PJ; Tarran R
    Expert Opin Ther Targets; 2018 Aug; 22(8):687-701. PubMed ID: 30028216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells.
    Mroz MS; Harvey BJ
    Steroids; 2019 Nov; 151():108461. PubMed ID: 31344409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis.
    Shei RJ; Peabody JE; Kaza N; Rowe SM
    Curr Opin Pharmacol; 2018 Dec; 43():152-165. PubMed ID: 30340955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPX-101 Is a Novel Epithelial Sodium Channel-targeted Therapeutic for Cystic Fibrosis That Restores Mucus Transport.
    Scott DW; Walker MP; Sesma J; Wu B; Stuhlmiller TJ; Sabater JR; Abraham WM; Crowder TM; Christensen DJ; Tarran R
    Am J Respir Crit Care Med; 2017 Sep; 196(6):734-744. PubMed ID: 28481660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generation ENaC inhibitors detach cystic fibrosis airway mucus bundles via sodium/hydrogen exchanger inhibition.
    Giorgetti M; Klymiuk N; Bähr A; Hemmerling M; Jinton L; Tarran R; Malmgren A; Åstrand A; Hansson GC; Ermund A
    Eur J Pharmacol; 2021 Aug; 904():174123. PubMed ID: 33974881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epithelial sodium channel silencing as a strategy to correct the airway surface fluid deficit in cystic fibrosis.
    Gianotti A; Melani R; Caci E; Sondo E; Ravazzolo R; Galietta LJ; Zegarra-Moran O
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):445-52. PubMed ID: 23600628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment.
    Kota P
    Curr Opin Pharmacol; 2022 Jun; 64():102209. PubMed ID: 35483215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways.
    Reihill JA; Walker B; Hamilton RA; Ferguson TE; Elborn JS; Stutts MJ; Harvey BJ; Saint-Criq V; Hendrick SM; Martin SL
    Am J Respir Crit Care Med; 2016 Sep; 194(6):701-10. PubMed ID: 27014936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics.
    Kunzelmann K; Mall M
    Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New pulmonary therapies directed at targets other than CFTR.
    Donaldson SH; Galietta L
    Cold Spring Harb Perspect Med; 2013 Jun; 3(6):. PubMed ID: 23732851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial Na
    Smith NJ; Solovay CF
    Pharm Pat Anal; 2017 Jul; 6(4):179-188. PubMed ID: 28696180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.
    Varelogianni G; Hussain R; Strid H; Oliynyk I; Roomans GM; Johannesson M
    Cell Biol Int; 2013 Nov; 37(11):1149-56. PubMed ID: 23765701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cAMP triggers Na
    Luan X; Le Y; Jagadeeshan S; Murray B; Carmalt JL; Duke T; Beazley S; Fujiyama M; Swekla K; Gray B; Burmester M; Campanucci VA; Shipley A; Machen TE; Tam JS; Ianowski JP
    Cell Rep; 2021 Oct; 37(1):109795. PubMed ID: 34610318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ENaC inhibitors for the treatment of cystic fibrosis.
    Butler R; Hunt T; Smith NJ
    Pharm Pat Anal; 2015 Jan; 4(1):17-27. PubMed ID: 25565157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting ENaC as a Molecular Suspect in Cystic Fibrosis.
    Bangel-Ruland N; Tomczak K; Weber WM
    Curr Drug Targets; 2015; 16(9):951-7. PubMed ID: 25544019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel.
    Joo NS; Jeong JH; Cho HJ; Wine JJ
    Sci Rep; 2016 Nov; 6():36806. PubMed ID: 27830759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC).
    Qadri YJ; Cormet-Boyaka E; Rooj AK; Lee W; Parpura V; Fuller CM; Berdiev BK
    J Biol Chem; 2012 May; 287(20):16781-90. PubMed ID: 22442149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease.
    Mall MA
    Exp Physiol; 2009 Feb; 94(2):171-4. PubMed ID: 19060118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis.
    Myerburg MM; Butterworth MB; McKenna EE; Peters KW; Frizzell RA; Kleyman TR; Pilewski JM
    J Biol Chem; 2006 Sep; 281(38):27942-9. PubMed ID: 16873367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.