These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23547956)

  • 1. Energetics of protein stability at extreme environmental temperatures in bacterial trigger factors.
    Struvay C; Negro S; Matagne A; Feller G
    Biochemistry; 2013 Apr; 52(17):2982-90. PubMed ID: 23547956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures.
    Godin-Roulling A; Schmidpeter PA; Schmid FX; Feller G
    Environ Microbiol; 2015 Jul; 17(7):2407-20. PubMed ID: 25389111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima.
    Wassenberg D; Welker C; Jaenicke R
    J Mol Biol; 1999 May; 289(1):187-93. PubMed ID: 10339416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
    Schuler B; Kremer W; Kalbitzer HR; Jaenicke R
    Biochemistry; 2002 Oct; 41(39):11670-80. PubMed ID: 12269809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.
    Piette F; D'Amico S; Struvay C; Mazzucchelli G; Renaut J; Tutino ML; Danchin A; Leprince P; Feller G
    Mol Microbiol; 2010 Apr; 76(1):120-32. PubMed ID: 20199592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima.
    Dams T; Jaenicke R
    Biochemistry; 1999 Jul; 38(28):9169-78. PubMed ID: 10413491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima.
    Consalvi V; Chiaraluce R; Giangiacomo L; Scandurra R; Christova P; Karshikoff A; Knapp S; Ladenstein R
    Protein Eng; 2000 Jul; 13(7):501-7. PubMed ID: 10906345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus.
    Knapp S; Karshikoff A; Berndt KD; Christova P; Atanasov B; Ladenstein R
    J Mol Biol; 1996 Dec; 264(5):1132-44. PubMed ID: 9000635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus.
    Kaushik JK; Ogasahara K; Yutani K
    J Mol Biol; 2002 Mar; 316(4):991-1003. PubMed ID: 11884137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic basis for the increased thermostability of CheY from the hyperthermophile Thermotoga maritima.
    Deutschman WA; Dahlquist FW
    Biochemistry; 2001 Oct; 40(43):13107-13. PubMed ID: 11669649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of and interactions between domains of trigger factor from Thermotoga maritima.
    Martinez-Hackert E; Hendrickson WA
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):536-47. PubMed ID: 17372359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water.
    Pfeil W; Gesierich U; Kleemann GR; Sterner R
    J Mol Biol; 1997 Oct; 272(4):591-6. PubMed ID: 9325114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein.
    Esser D; Rudolph R; Jaenicke R; Böhm G
    J Mol Biol; 1999 Sep; 291(5):1135-46. PubMed ID: 10518949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C; Gromiha MM; Kumar S
    Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR.
    Pang J; Allemann RK
    Phys Chem Chem Phys; 2007 Feb; 9(6):711-8. PubMed ID: 17268682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic study of phosphoglycerate kinase from Thermotoga maritima and its isolated domains: reversible thermal unfolding monitored by differential scanning calorimetry and circular dichroism spectroscopy.
    Zaiss K; Jaenicke R
    Biochemistry; 1999 Apr; 38(14):4633-9. PubMed ID: 10194385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
    LeMaster DM; Tang J; Hernández G
    Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.