These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2354813)

  • 1. The cytoskeleton as a target in quinone toxicity.
    Bellomo G; Mirabelli F; Richelmi P; Malorni W; Iosi F; Orrenius S
    Free Radic Res Commun; 1990; 8(4-6):391-9. PubMed ID: 2354813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones.
    Thor H; Mirabelli F; Salis A; Cohen GM; Bellomo G; Orrenius S
    Arch Biochem Biophys; 1988 Nov; 266(2):397-407. PubMed ID: 3190234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying surface bleb formation.
    Malorni W; Iosi F; Mirabelli F; Bellomo G
    Chem Biol Interact; 1991; 80(2):217-36. PubMed ID: 1934151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of hepatocyte protein kinase C by redox-cycling quinones.
    Kass GE; Duddy SK; Orrenius S
    Biochem J; 1989 Jun; 260(2):499-507. PubMed ID: 2764885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of Ca2+ in the toxicity of alkylating and oxidizing quinone imines in isolated hepatocytes.
    Nicotera P; Rundgren M; Porubek DJ; Cotgreave I; Moldéus P; Orrenius S; Nelson SD
    Chem Res Toxicol; 1989; 2(1):46-50. PubMed ID: 2535261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal alterations in human platelets exposed to oxidative stress are mediated by oxidative and Ca2+-dependent mechanisms.
    Mirabelli F; Salis A; Vairetti M; Bellomo G; Thor H; Orrenius S
    Arch Biochem Biophys; 1989 May; 270(2):478-88. PubMed ID: 2539775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells. I. Biochemical and immunocytochemical features.
    Bellomo G; Mirabelli F; Vairetti M; Iosi F; Malorni W
    J Cell Physiol; 1990 Apr; 143(1):118-28. PubMed ID: 2318902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of surface morphology caused by the metabolism of menadione in mammalian cells are associated with the oxidation of critical sulfhydryl groups in cytoskeletal proteins.
    Mirabelli F; Salis A; Perotti M; Taddei F; Bellomo G; Orrenius S
    Biochem Pharmacol; 1988 Sep; 37(18):3423-7. PubMed ID: 3421993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid microfilament reorganization induced in isolated rat hepatocytes by microcystin-LR, a cyclic peptide toxin.
    Eriksson JE; Paatero GI; Meriluoto JA; Codd GA; Kass GE; Nicotera P; Orrenius S
    Exp Cell Res; 1989 Nov; 185(1):86-100. PubMed ID: 2806414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinone toxicity in hepatocytes without oxidative stress.
    Rossi L; Moore GA; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1986 Nov; 251(1):25-35. PubMed ID: 3789732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and measuring redox cycling and cytotoxicity of quinones.
    Hughes L; Wingate J; Griffith R; Aitken RJ
    Drug Metab Lett; 2007 Dec; 1(4):245-53. PubMed ID: 19356050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver.
    Bellomo G; Mirabelli F; Richelmi P; Orrenius S
    FEBS Lett; 1983 Oct; 163(1):136-9. PubMed ID: 6138281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-dependent calcium uptake by rat liver plasma membrane vesicles. Effect of alkylating hepatotoxins in vivo.
    Tsokos-Kuhn JO; Todd EL; McMillin-Wood JB; Mitchell JR
    Mol Pharmacol; 1985 Jul; 28(1):56-61. PubMed ID: 4021997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of thiol groups in the inhibition of liver microsomal Ca2+ sequestration by toxic agents.
    Thor H; Hartzell P; Svensson SA; Orrenius S; Mirabelli F; Marinoni V; Bellomo G
    Biochem Pharmacol; 1985 Oct; 34(20):3717-23. PubMed ID: 4052110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress injury studied in isolated intact cells.
    Bellomo G; Mirabelli F
    Mol Toxicol; 1987-1988 Fall; 1(4):281-93. PubMed ID: 3334705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ
    Chem Biol Interact; 1991; 80(1):1-41. PubMed ID: 1913977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of filamentous actin diminishes hormonally evoked Ca2+ responses in rat liver.
    Yamamoto NS; Merkle CJ; Kraus-Friedmann N
    Metabolism; 1999 Oct; 48(10):1241-7. PubMed ID: 10535385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sulfhydryl groups in benzoquinone-induced Ca2+ release by rat liver mitochondria.
    Moore GA; Weis M; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1988 Dec; 267(2):539-50. PubMed ID: 3214168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.