BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23548149)

  • 1. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli.
    Novellasdemunt L; Bultot L; Manzano A; Ventura F; Rosa JL; Vertommen D; Rider MH; Navarro-Sabate À; Bartrons R
    Biochem J; 2013 Jun; 452(3):531-43. PubMed ID: 23548149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells.
    Novellasdemunt L; Obach M; Millán-Ariño L; Manzano A; Ventura F; Rosa JL; Jordan A; Navarro-Sabate A; Bartrons R
    Biochem J; 2012 Mar; 442(2):345-56. PubMed ID: 22115192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer.
    Bando H; Atsumi T; Nishio T; Niwa H; Mishima S; Shimizu C; Yoshioka N; Bucala R; Koike T
    Clin Cancer Res; 2005 Aug; 11(16):5784-92. PubMed ID: 16115917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3.
    Bolaños JP
    Biochem J; 2013 Jun; 452(3):e7-9. PubMed ID: 23725459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes.
    Houddane A; Bultot L; Novellasdemunt L; Johanns M; Gueuning MA; Vertommen D; Coulie PG; Bartrons R; Hue L; Rider MH
    Cell Signal; 2017 Jun; 34():23-37. PubMed ID: 28235572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells.
    Rodríguez-García A; Samsó P; Fontova P; Simon-Molas H; Manzano A; Castaño E; Rosa JL; Martinez-Outshoorn U; Ventura F; Navarro-Sabaté À; Bartrons R
    FEBS J; 2017 Oct; 284(20):3437-3454. PubMed ID: 28834297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation.
    Ge X; Lyu P; Gu Y; Li L; Li J; Wang Y; Zhang L; Fu C; Cao Z
    Biochem Biophys Res Commun; 2015 Aug; 464(3):862-8. PubMed ID: 26171876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis.
    Rider MH; Bertrand L; Vertommen D; Michels PA; Rousseau GG; Hue L
    Biochem J; 2004 Aug; 381(Pt 3):561-79. PubMed ID: 15170386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells.
    Calvo MN; Bartrons R; Castaño E; Perales JC; Navarro-Sabaté A; Manzano A
    FEBS Lett; 2006 May; 580(13):3308-14. PubMed ID: 16698023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter.
    Kukushkin AN; Abramova MV; Svetlikova SB; Darieva ZA; Pospelova TV; Pospelov VA
    Oncogene; 2002 Jan; 21(5):719-30. PubMed ID: 11850800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation.
    Atsumi T; Nishio T; Niwa H; Takeuchi J; Bando H; Shimizu C; Yoshioka N; Bucala R; Koike T
    Diabetes; 2005 Dec; 54(12):3349-57. PubMed ID: 16306349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases.
    Yalcin A; Clem BF; Simmons A; Lane A; Nelson K; Clem AL; Brock E; Siow D; Wattenberg B; Telang S; Chesney J
    J Biol Chem; 2009 Sep; 284(36):24223-32. PubMed ID: 19473963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogen-activated protein kinase activated protein kinase 2 (MK2) participates in p38 MAPK regulated control of oligodendrocyte differentiation.
    Haines JD; Fang J; Mushynski WE; Almazan G
    Glia; 2010 Aug; 58(11):1384-93. PubMed ID: 20607863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The translation inhibitor anisomycin induces Elk-1-mediated transcriptional activation of egr-1 through multiple mitogen-activated protein kinase pathways.
    Shin SY; Lee JH; Min B; Lee YH
    Exp Mol Med; 2006 Dec; 38(6):677-85. PubMed ID: 17202844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis.
    Chesney J
    Curr Opin Clin Nutr Metab Care; 2006 Sep; 9(5):535-9. PubMed ID: 16912547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer.
    Seo M; Lee YH
    J Mol Biol; 2014 Feb; 426(4):830-42. PubMed ID: 24295899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and characterization of a stable MK2-EGFP cell line and subsequent development of a high-content imaging assay on the Cellomics ArrayScan platform to screen for p38 mitogen-activated protein kinase inhibitors.
    Williams RG; Kandasamy R; Nickischer D; Trask OJ; Laethem C; Johnston PA; Johnston PA
    Methods Enzymol; 2006; 414():364-89. PubMed ID: 17110203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterol regulatory element binding protein-1a transactivates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene promoter.
    Metón I; Egea M; Anemaet IG; Fernández F; Baanante IV
    Endocrinology; 2006 Jul; 147(7):3446-56. PubMed ID: 16614080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer.
    Yi M; Ban Y; Tan Y; Xiong W; Li G; Xiang B
    Mol Metab; 2019 Feb; 20():1-13. PubMed ID: 30553771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase.
    Jaspers I; Samet JM; Erzurum S; Reed W
    Am J Respir Cell Mol Biol; 2000 Jul; 23(1):95-102. PubMed ID: 10873158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.