BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23548150)

  • 1. Analysis of abstract and concrete word processing in persons with aphasia and age-matched neurologically healthy adults using fMRI.
    Sandberg C; Kiran S
    Neurocase; 2014 Aug; 20(4):361-88. PubMed ID: 23548150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery.
    Alyahya RSW; Halai AD; Conroy P; Lambon Ralph MA
    Neuroimage Clin; 2018; 17():811-825. PubMed ID: 29619318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural dichotomy of word concreteness: a view from functional neuroimaging.
    Kumar U
    Cogn Process; 2016 Feb; 17(1):39-48. PubMed ID: 26410213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The differential dependence of abstract and concrete words upon associative and similarity-based information: Complementary semantic interference and facilitation effects.
    Crutch SJ; Warrington EK
    Cogn Neuropsychol; 2010 Feb; 27(1):46-71. PubMed ID: 20658386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of word concreteness on recognition memory.
    Fliessbach K; Weis S; Klaver P; Elger CE; Weber B
    Neuroimage; 2006 Sep; 32(3):1413-21. PubMed ID: 16861011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poststroke aphasia recovery assessed with functional magnetic resonance imaging and a picture identification task.
    Szaflarski JP; Eaton K; Ball AL; Banks C; Vannest J; Allendorfer JB; Page S; Holland SK
    J Stroke Cerebrovasc Dis; 2011; 20(4):336-45. PubMed ID: 20719532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation.
    West WC; Holcomb PJ
    J Cogn Neurosci; 2000 Nov; 12(6):1024-37. PubMed ID: 11177422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hidden word learning capacity through orthography in aphasia.
    Tuomiranta LM; Càmara E; Froudist Walsh S; Ripollés P; Saunavaara JP; Parkkola R; Martin N; Rodríguez-Fornells A; Laine M
    Cortex; 2014 Jan; 50():174-91. PubMed ID: 24262200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement.
    Fiebach CJ; Friederici AD
    Neuropsychologia; 2004; 42(1):62-70. PubMed ID: 14615076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct brain systems for processing concrete and abstract concepts.
    Binder JR; Westbury CF; McKiernan KA; Possing ET; Medler DA
    J Cogn Neurosci; 2005 Jun; 17(6):905-17. PubMed ID: 16021798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge.
    Della Rosa PA; Catricalà E; Canini M; Vigliocco G; Cappa SF
    Neuroimage; 2018 Jul; 175():449-459. PubMed ID: 29655937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converging evidence from fMRI and aphasia that the left temporoparietal cortex has an essential role in representing abstract semantic knowledge.
    Skipper-Kallal LM; Mirman D; Olson IR
    Cortex; 2015 Aug; 69():104-20. PubMed ID: 26026619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overt naming in aphasia studied with a functional MRI hemodynamic delay design.
    Martin PI; Naeser MA; Doron KW; Bogdan A; Baker EH; Kurland J; Renshaw P; Yurgelun-Todd D
    Neuroimage; 2005 Oct; 28(1):194-204. PubMed ID: 16009568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of concreteness in semantic categorization.
    Pexman PM; Hargreaves IS; Edwards JD; Henry LC; Goodyear BG
    J Cogn Neurosci; 2007 Aug; 19(8):1407-19. PubMed ID: 17651011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness.
    van Oers CA; Vink M; van Zandvoort MJ; van der Worp HB; de Haan EH; Kappelle LJ; Ramsey NF; Dijkhuizen RM
    Neuroimage; 2010 Jan; 49(1):885-93. PubMed ID: 19733673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Audiovisual speech segmentation in post-stroke aphasia: a pilot study.
    Basirat A; Allart É; Brunellière A; Martin Y
    Top Stroke Rehabil; 2019 Dec; 26(8):588-594. PubMed ID: 31369358
    [No Abstract]   [Full Text] [Related]  

  • 17. Neural pathways involved in the processing of concrete and abstract words.
    Kiehl KA; Liddle PF; Smith AM; Mendrek A; Forster BB; Hare RD
    Hum Brain Mapp; 1999; 7(4):225-33. PubMed ID: 10408766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The right hemisphere's role in action word processing: a double case study.
    Neininger B; Pulvermüller F
    Neurocase; 2001; 7(4):303-17. PubMed ID: 11557826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study.
    Mattioli F; Ambrosi C; Mascaro L; Scarpazza C; Pasquali P; Frugoni M; Magoni M; Biagi L; Gasparotti R
    Stroke; 2014 Feb; 45(2):545-52. PubMed ID: 24309584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a measure of function word use in narrative discourse: core lexicon analysis in aphasia.
    Kim H; Kintz S; Wright HH
    Int J Lang Commun Disord; 2021 Jan; 56(1):6-19. PubMed ID: 32909656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.